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Summary

This thesis focuses on model-based predictive control under uncertainty, with a specific
emphasis on systems affected by uncertainty characterized by worst-case geometric
bounds and probability distributions. The research topic is motivated by the necessity
for computationally efficient controllers tailored for uncertain dynamical systems, where
safety of the controlled systems needs to be guaranteed to an acceptable level. A
collection of novel algorithms addressing robust and stochastic model predictive control
(MPC) problems has been reported.

In contrast to nominal MPC, which is widely employed in many control scenarios, robust
and stochastic MPC have encountered fewer real-world applications primarily due to their
numerical and theoretical challenges. However, uncertainty is a critical factor in many
control scenarios. In MPC community, uncertainty is primarily addressed through two
approaches: robust MPC and stochastic MPC. Robust MPC guarantees that all possible
future state and control trajectories adhere to constraints while minimizing the “worst-
case” cost or some generalized costs. In contrast, stochastic MPC aims to minimize an
expectation cost or some generalized costs while incorporating chance (probabilistic)
constraints. This approach allows the controlled system to deviate from constraints to an
acceptable extent. The primary focus of this thesis is dedicated to the design of these two
classes of approaches. Although strictly speaking, robust and stochastic MPC belong
to distinct categories, robust MPC tends to yield conservative control policies since it
disregards the stochastic information about the bounded uncertainty under consideration,
if such stochastic information is available. Additionally, due to the utilization of chance
constraints, stochastic MPC is capable of handling stochastic uncertainty with unbounded
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support. On the other hand, addressing the expectation cost and chance constraints,
along with analyzing the control-theoretic properties of the controlled systems, present
greater challenges in stochastic MPC compared to robust MPC. Similar to nominal
MPC, the key properties to examine when analyzing these MPC approaches include the
stability, optimality, and constraint satisfaction of the closed-loop controlled systems.

For scenarios where uncertainty is bounded and no further stochastic information is
available, this thesis introduces a robust MPC controller using tubes, which is able
to exponentially stabilize the controlled system. For scenarios where uncertainty is
characterized by stochastic descriptions. Within this context, this thesis introduces
two stochastic MPC controllers designed to stabilize the system while adhering to
stage-wise (pointwise-in-time) chance constraints, commonly referred to as joint chance
constraints in the stochastic MPC community. Subsequently, we investigate mission-wide
(dynamic-joint) chance constraints over the state trajectory, which are, in generally,
more meaningful in defining safety for engineering systems. In this regard, we offer a
characterization of the exact solution to the mission-wide chance-constrained optimal
control problems, and subsequently, we approximate these exact solutions using a
stochastic MPC approach with shrinking time horizons.
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thank Sébastien Gros for his patience during challenging phases of my research journey.
I am deeply grateful for his backing of my research endeavors within the Department
of Engineering Cybernetics (ITK) and for creating an exceptionally enjoyable research
team. Moreover, I also owe thanks to my co-supervisor professor Mary Ann Lundteigen
for her constructive feedback during my midterm evaluation.
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Chapter 1

Introduction

The presented thesis consists of a series of contributions on the topic of model-based
predictive control in the presence of uncertainty. This chapter provides the background
and motivation of this thesis. This chapter also covers the research topics and objectives
of this thesis. At the end of this chapter, an overview of the thesis is presented based on
the contributions which are outlined chapter-by-chapter.

1.1 Background and Motivation

Model predictive control (MPC) stands out as one of the most investigated methods
in control theory for optimal control. At each time step, the MPC controller solves an
optimal control problem. The optimal control problem utilises predictions of the future
behaviour of a dynamic system on a finite time horizon, and it makes use of the current
state estimate as its initial condition. Once the optimal predicted control sequence
is chosen, the first control input of the optimal predicted control sequence is applied
on the actual system until the next state estimate is obtained. The procedure is then
repeated. As depicted in Figure 1.1, the fundamental principle behind the MPC controller
entails utilizing a mathematical model of the system for prediction. Subsequently, an
optimization problem is solved using this model to determine the optimal control input.

Conventional control techniques such as proportional-integral-derivative (PID) control
typically suffice for single-input single-output systems with low-order dynamics and
without constraints taken into account [1]. In contrast, MPC stands out as an important
model-based control strategy designed for complex multiple-input multiple-output
control problems with constraints on the inputs and/or outputs.

1



Chapter 1. Introduction

Optimization Real Systemcontrol input

Model

MPC

output

state estimate

state

Figure 1.1: Streamlined block diagram illustrating an MPC-based control loop.

To summarize, the MPC approach offers several advantages over traditional control
strategies where the following are the most important. There are other advantages too,
but we outline the most important ones:

1. Multivariable Control: MPC can handle systems with multiple inputs and
outputs. This capability is crucial in complex systems where interactions between
variables need to be considered explicitly.

2. Constraint Handling: MPC systematically deals with input and state/output
constraints such that safety of the controlled system is guaranteed.

3. Inherent Robustness: As a feedback controller, MPC exhibits a certain degree
of inherent robustness to reject small disturbances, and it ensures stability of the
closed-loop system.

4. Integration with Advanced Control Strategies: MPC can be integrated with
other advanced control strategies, such as advanced uncertainty quantification and
rejection techniques, as well as machine leaning and adaptive control algorithms,
to further enhance system performance and robustness.

At present, there is a well-established mathematical understanding of the MPC controller,
enabling researchers and practitioners to systematically handle challenges such as
feasibility, stability, and performance. For those with a particular interest, refer to the
monographs and survey papers such as [2]–[10]. Due to these advantages, the MPC
controller has been extensively applied in various industrial processes; for example,
see [11], [6, Part III], and [7, Chapters 7–9]. Obviously, the success of MPC, or any
model-based control approach, hinges on the quality of the employed prediction model,
which should ideally reflect the real system as accurately as possible. Predictions derived

2



1.1. Background and Motivation

from an inaccurate model can deteriorate control performance rather than improve it.
As a result, the biggest disadvantage of MPC is the significant effort required to obtain a
process model from system identification techniques.

MPC controllers are implemented based on the certainty-equivalent principle. The
process model is typically given in a disturbance-free, deterministic form, so that the
future predictions of the system is optimized as though neither external disturbances nor
model mismatch were present. As a feedback controller, MPC is inherently able to reject
small magnitudes of uncertainty despite not considering uncertainty explicitly [12]–[16].
This inherent robustness renders conventional MPC suitable for applications where
safety is of lesser concern.

In safety-critical applications where uncertainty affects the system and the inherent
robustness of conventional MPC is insufficient to mitigate this uncertainty, it becomes
necessary to consider the influence of uncertainty in the MPC formulation. The block
diagram of MPC under uncertainty is briefly sketched in Figure 1.2. In this regard, various
safety-conscious MPC variants have been proposed to explicitly handle uncertainty.
These include robust MPC [2, Chapter 3] [4, Part II] [17]–[20], stochastic MPC [4, Part
III] [21]–[23], adaptive MPC [24]–[27], as well as more recent developments such as
distributionally robust MPC [28]–[30] and learning-based MPC [31]–[35], all aimed at
ensuring the system’s safety to an acceptable level.

Optimization Real Systemcontrol input

Model

MPC

output

state estimate

state

model error disturbance

Figure 1.2: Streamlined block diagram of an MPC-based control loop that takes model mismatch
and process disturbance into account.
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Chapter 1. Introduction

These syntheses of MPC under uncertainty cope with various types of uncertainty
that impact the system under consideration. Robust MPC synthesis considers the
set-membership description of bounded uncertainty, in which only worst-case geometric
bounds of the uncertainty are available. Stochastic MPC synthesis considers the uncer-
tainty description taking the form of a specific probability distribution. Distributionally
robust MPC synthesis addresses the uncertainty whose probability distribution belongs
to a set of probability distributions. The synthesis of adaptive MPC aligns with the dual
control paradigm, where the control inputs applied to an uncertain system serve the
dual purpose of exploring and actively learning about uncertainty, while also directly
controlling the system dynamics. Learning-based MPC is an ongoing research area that
merges traditional MPC with machine learning techniques, leveraging gathered data. It
involves using machine learning algorithms to train the MPC parameters in order to
optimize control performance.

In this thesis, our primary focus is on robust and stochastic MPC syntheses. Robust
(stochastic) MPC computes a control policy by repeatedly solving a finite–horizon
robust (stochastic) optimal control problem in a receding horizon fashion. The robust
optimal control problem formulation guarantees that all possible future state and control
trajectories adhere to constraints while minimizing the “worst-case” cost or a generalized
cost. In contrast, the formulation of the stochastic optimal control problem guarantees
constraints in a probabilistic way while typically minimizing the expectation cost.
In robust and stochastic optimal control problems, the decision variable is a control
policy that consists of a sequence of control laws rather than a sequence of individual
controls. The computational complexity associated with solving these problems is
quite challenging. These numerical challenges encompass the necessity to model the
uncertainty, as well as the complexity of selecting the optimal control policy from
an infinite-dimensional function space. To implement robust and stochastic MPC
controllers in real-world applications, it is necessary to utilize approximation methods to
achieve a better balance between computational complexity and control performance in
a theoretically rigorous manner. Consequently, robust and stochastic MPC remains an
active area of research to date. In contrast to robust MPC, where significant progress
has been achieved and the theoretical foundations are well-established, stochastic MPC
research has not yet reached a full maturity.

4



1.2. Research Objectives

1.2 Research Objectives

One of the state-of-the-art paradigms for robust MPC synthesis is tube MPC [18]. Tube
MPC belongs to a class of set-theoretic control methods, in which the closed-loop tube
model predictive controlled uncertain dynamics are obtained through the prediction of
tubes rather than isolated trajectories. The deployed tubes capture the totality of possible
realizations of future state sequences under a given control policy. Based on the key
three tube MPC methods proposed for linear systems [36]–[38], many subsequent studies
have emerged over the past two decades, as reviewed in Chapter 3. Each of these three
methods has their own set of advantages and disadvantages. This motivates us to revisit
these methods and propose an improved approach that leverages their strengths while
mitigating their weaknesses, as shown in Chapter 3.

For stochastic MPC, solving the underlying stochastic optimal control problems is rooted
in stochastic programming [39]. Stochastic MPC allows for constraint violation and
aims to systematically balance improved performance and constraint satisfaction based
on the probabilistic nature of the uncertainty. Typically, cost function is statistically
evaluated in terms of expected value, while constraints are probabilistically described
using chance constraints that allow for constraint violation as long as the probability
of occurrence remains below a specified threshold. However, since underlying systems
are often multidimensional and multiple constraints are imposed on the state or state
trajectory, the evaluation of chance constraints involves multidimensional integrals,
making it computationally challenging. The feasible set of chance constraints is
generally nonconvex, further complicating chance-constrained stochastic optimal control
problems. Moreover, propagating uncertainty through complex dynamics to obtain the
distribution of predicted system trajectories (or the state distribution at each time stage)
is difficult. All these reasons result in that in its current form, stochastic MPC is an
exploding field, which is complicated and cluttered.

Safety is typically defined using a predefined set of states represented by a set of
inequalities. Individual chance constraints and stage-wise chance constraints (also called
joint chance constraints) are commonly employed in the stochastic MPC community [21].
Individual chance constraints provide a probabilistic safety guarantee for each inequality
satisfaction of the state at each time stage, while stage-wise chance constraints ensure
a probabilistic safety certificate for the simultaneous satisfaction of a whole set of
inequalities for the state at each time stage. Compared to individual chance constraints,
stage-wise chance constraints are more natural but more difficult to handle, as explained
in [21, Section 2.2]. Thus, the focus of Chapters 4 and 5 is on the stochastic MPC with

5



Chapter 1. Introduction

stage-wise chance constraints

In certain real-world scenarios, such as automated vehicles, robot path planning, and
drone flights, the duration of the control task is typically finite. Any crashes during the
mission can lead to severe damage to the vehicle, robot, or drone, resulting in mission
failure. In this context, any state trajectory that deviates from the safe set during the
mission is considered unsafe. The chance constraint naturally arises in terms of the state
trajectory within the mission duration, so we refer to it as a mission-wide (or dynamically
joint) chance constraint. The differences between mission-wide and stage-wise chance
constraints are visualized in Figure 1.3 using an example of drone flights. Even in
settings with infinite time duration, the mission-wide chance constraint is typically more
meaningful, provided that the controlled state can reach a set within finite time steps
and remain in this set for the remaining mission duration. Clearly, mission-wide chance
constraints are even more complex than stage-wise chance constraints because the state
trajectory contains more states that are coupled through the system dynamics.

no-fly zone

no-fly zone

Goal

0 1 2 M − 1 M· · ·

· · ·

· · ·SWPS at stage 2

MWPS

· · ·

· · ·

· · ·

Figure 1.3: An example of drone flights. Mission-Wide Probability of Safety (MWPS) pertains
to the entire mission duration, whereas Stage-Wise Probability of Safety (SWPS) applies to
individual time stages.

In chapter 6, we argue that conventional dynamic programming method fails to directly
apply to the mission-wide chance-constrained optimal control problems. To handle these
new types of constraints, we propose a dynamic programming solution through proper
state augmentation. However, this approach unfortunately comes with the challenge
of working in functional spaces. Nonetheless, it can serve as a basis to inspire the
development of further approximation methods. For instance, two preprints [40], [41]
have emerged recently. In [40], the authors utilize a binary state augmentation, akin to
our approach outlined in Chapter 6, to implement dynamic programming. Building upon
this state augmentation, [41] introduces a linear programming approach to tackle mission-
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1.3. Contributions and Outline

wide chance-constrained optimal control problems. Alternatively, in chapter 7, we
propose a novel mission-wide safety-constrained stochastic MPC controller, implemented
in a shrinking-time horizon fashion for linear systems, to approximate the mission-wide
chance-constrained optimal control problems.

1.3 Contributions and Outline

This thesis consists of eight chapters. In the rest of this chapter, we elaborate on the
contributions of this thesis in a chapter-by-chapter manner. Chapter 2 presents some
preliminary theory essential for the subsequent chapters. The main contributions are
introduced in Chapters 3–7. Chapter 8 concludes the thesis and discusses some future
working directions. Figure 1.4 provides the outline of the thesis.

Model-Based
Predictive Control

Robust MPC

Stochastic MPC

OCP + MWCC

Chapter 3

Chapter 4

Chapter 5

Stochastic MPC
+ MWCC

Chapter 6

Chapter 7

Preliminaries Chapter 2

Introduction Chapter 1

Conclusions Chapter 8

Figure 1.4: A brief overview of the thesis.(Abbreviations: Mission-Wide Chance Constraint
(MWCC) and Optimal Control Problem (OCP))
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Chapter 3: Tube MPC with Time-Varying Cross-Sections

Publication: Kai Wang, Sixing Zhang, Sébastien Gros and Saša V. Raković. Tube
MPC with Time-Varying Cross-Sections. Accepted to IEEE Transactions on Automatic
Control, 2024.

Contributions: This chapter considers tube model predictive control of discrete-time
linear systems subject to additive bounded disturbances and mixed state and control
constraints. An improved tube model predictive controller, leveraging the advantages
and mitigating the disadvantages of three pivotal existing methods, is proposed. Its
computational aspects and theoretical properties are thoroughly discussed and compared
with its predecessor methods. Specifically, the refined tube MPC maintains all the
favorable computational and structural characteristics of its predecessors, and it also
enlarges the feasible domain and enhances the stability guarantees to some reasonable
extent. Additionally, it streamlines the offline computations through the utilization of
support functions.

Chapter 4: Robustifying MPC of Chance Constrained Linear Systems

Publication: Kai Wang, Kiet Tuan Hoang and Sébastien Gros. Robustifying Model
Predictive Control of Uncertain Linear Systems with Chance Constraints. Accepted to
IEEE Conference on Decision and Control (CDC), 2024.

Contributions: This chapter proposes a model predictive controller for discrete-time
linear systems with additive, possibly unbounded, stochastic disturbances and subject to
chance constraints. By computing a polytopic probabilistic positively invariant set for
constraint tightening with the help of the computation of the minimal robust positively
invariant set, the chance constraints are guaranteed, assuming only the mean and
covariance of the disturbance distribution are given. The resulting online optimization
problem is a standard strictly quadratic programming, just like in conventional model
predictive control with recursive feasibility and stability guarantees and is simple to
implement.

Chapter 5: Stochastic Linear MPC with Sound Control-Theoretic Properties

Publication: Kai Wang, Oliver K. Hasler and Sébastien Gros. Stochastic MPC with
Robust Positive Invariance and Exponential Stability Guarantees. Submitted to IEEE
Transactions on Automatic Control, 2024.
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1.3. Contributions and Outline

Contributions: This chapter investigates stochastic MPC of linear systems in the
presence of additive, bounded, stochastic disturbances and subject to joint state chance
constraints and hard input constraints. As it is in the case of rigid tube MPC, the optimal
control problem solved online, incorporates the initial condition of the nominal system
as a decision variable. This incorporation is a key ingredient in establishing a strong
stability result, namely robust exponential stability of a robust positively invariant set
for the controlled dynamics. The mixed stochastic/worst-case tightening procedure is
utilized to establish the positive invariance property of the controllable set. The resulting
stochastic MPC algorithm solves online a quadratic programming problem and requires
a similar offline computational effort to that required in classic tube MPC.

Chapter 6: Mission-Wide Chance-Constrained Optimal Control via DP

Publication: Kai Wang, and Sébastien Gros. Solving Mission-Wide Chance-Constrained
Optimal Control Using Dynamic Programming. In Proceedings of the 61st IEEE
Conference on Decision and Control (CDC), 2022.

Contributions: This chapter aims to provide a Dynamic Programming (DP) approach
to solve the Mission-Wide Chance-Constrained Optimal Control Problems (MWCC-
OCP). The mission-wide chance constraint guarantees that the probability that the
entire state trajectory lies within a constraint/safe region is higher than a prescribed
level, and is different from the stage-wise chance constraints imposed at individual
time steps. The control objective is to find an optimal policy sequence that achieves
both (i) satisfaction of a mission-wide chance constraint, and (ii) minimization of a
cost function. By transforming the stage-wise chance-constrained problem into an
unconstrained counterpart via Lagrangian method, standard DP can then be deployed.
Yet, for MWCC-OCP, this methods fails to apply, because the mission-wide chance
constraint cannot be easily formulated using stage-wise chance constraints due to the
time-correlation between the latter (individual states are coupled through the system
dynamics). To fill this gap, firstly, we detail the conditions required for a classical DP
solution to exist for this type of problem; secondly, we propose a DP solution to the
MWCC-OCP through state augmentation by introducing an additional functional state
variable.

Chapter 7: Stochastic MPC with Mission-Wide Chance Constraints

Publication: Kai Wang, and Sébastien Gros. Recursive Feasibility of Stochastic Model
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Predictive Control with Mission-Wide Probabilistic Constraints. In Proceedings of the
60th IEEE Conference on Decision and Control (CDC), 2021.

Contributions: This chapter is concerned with solving chance-constrained finite-horizon
optimal control problems, with a particular focus on the recursive feasibility issue of
stochastic MPC in terms of mission-wide probability of safety (MWPS). MWPS assesses
the probability that the entire state trajectory lies within the constraint set, and the
objective of the stochastic MPC controller is to ensure that it is no less than a threshold
value. This differs from classic stochastic MPC where the probability that the state lies
in the constraint set is enforced independently at each time instant. Unlike robust MPC,
where strict recursive feasibility is satisfied by assuming that the uncertainty is supported
by a compact set, the proposed concept of recursive feasibility for MWPS is based
on the notion of remaining MWPSs, which is conserved in the expected value sense.
We demonstrate the idea of mission-wide stochastic MPC linear stochastic systems by
deploying a scenario-based algorithm.
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Chapter 2

Preliminaries

2.1 Formulation of Model Predictive Control

We consider the following discrete-time systems of the form

x+ = f(x, u). (2.1)

where x ∈ Rn is the current state, x ∈ Rm is the current input and f : Rn × Rm → Rn

is the transition map that assigns the state x+ ∈ Rn at the next time instant to each state
and control pair (x, u). The function f is assumed to be continuous, and it satisfies

0 = f(0, 0),

i.e., the state and control pair (0, 0) is the desired equilibrium. The following analysis is
trivial to extended to the case where the desired equilibrium pair is specified by (xs, us),
i.e., xs = f(xs, us).

The state x and control u are subject to the following hard constraints

(x, u) ∈ X × U , (2.2)

where the state constraint set X ⊆ Rn is assumed to be closed, and the control constraint
set U ⊆ Rm is assumed to be compact. Both sets X and U are assumed to contain the
origin in their interior.

For a state x ∈ Rn, MPC solves the following finite-horizon, open-loop optimal control
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problem

V 0
N (x) = min

xN ,uN−1

N−1∑
k=0

ℓ(xk, uk) + Vf (xN ), (2.3a)

s.t. xk+1 = f(xk, uk), ∀k ∈ {0, 1, . . . , N − 1}, (2.3b)
(xk, uk) ∈ X × U , ∀k ∈ {0, 1, . . . , N − 1}, (2.3c)
x0 = x, (2.3d)
xN ∈ Xf ⊆ X . (2.3e)

The stage cost ℓ : Rn×Rm → R≥0 and terminal cost Vf : Xf → R≥0 are assumed to be
continuous, which typically penalize the distance to the desired equilibrium and origin
respectively. Naturally, we assume that ℓ(0, 0) = 0 and Vf (0) = 0. Given a prediction
horizon N ∈ N, The decision variables are specified by xN := (x⊤0 , x

⊤
1 , . . . , x

⊤
N )⊤ and

uN−1 := (u⊤0 , u
⊤
1 , . . . , u

⊤
N−1)

⊤.

Definition 2.1 A set Ω ⊆ X ⊆ Rn is called positive invariant for the system x+ = f(x)

with constraint x ∈ X if x ∈ Ω implies f(x) ∈ Ω

Definition 2.2 A set Ω ⊆ X ⊆ Rn is called control positive invariant for the system
x+ = f(x, u) with constraints (x, u) ∈ X × U if for all x ∈ Ω, there exists a control
u ∈ U ⊆ Rm such that f(x, u) ∈ Ω

The terminal set Xf is compact and control invariant for the system x+ = f(x, u) and
constraints (x, u) ∈ X × U , and it contains the origin in its interior. This terminal set is
the key ingredient in establishing recursive feasibility of the MPC controller (2.3). The
set of admissible decision variables is given by

∀x ∈ Rn, DN (x) = {(xN ,uN−1) : relations (2.3b)− (2.3e) hold} . (2.4)

The feasible domain for the optimal control problem (2.3), which is also known as the
N -step controllable set, is specified by

CN = {x : DN (x) ̸= ∅} .

Within this setting, the optimal control problem (2.3) is guaranteed to be well-posed,
and the value function V 0

N (·) exists for any state x ∈ CN [1, Proposition 2.4]. We denote
the optimal solutions of the optimal control problem (2.3) as

∀x ∈ CN , x0
N (x) and u0

N−1(x).
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The MPC controller evaluates implicitly the control law κN : CN 7→ U , specified by

∀x ∈ CN , κN (x) = u00(x),

and it induces the model predictive controlled dynamics

∀x ∈ CN , x+ = f(x, κN (x)). (2.5)

Since MPC relies on the receding-horizon solution of the optimization problem (2.3), it
is crucial to ensure that once (2.3) is solvable at the current state x, it remains solvable
for the state x+ at the next time instant, i.e., for all x ∈ CN , it holds that x+ ∈ CN with
x+ = f(x, κN (x)). This leads to the so-called recursive feasibility of MPC controllers,
which is also known as the positive invariance of the set CN for the model predictive
controlled dynamics (2.5) and the implicitly induced constraints (x, κN (x)) ∈ X × U .
Within the above setting, the recursive feasibility is guaranteed.

In the following, we discuss the stability properties of the MPC controller. The main
idea is to show that the value function V 0

N is a valid Lyapunov function for the model
predictive controlled dynamics (2.5).

Assumption 2.1 (Lower bound of ℓ (·)) There exists a function γ1 ∈ K∞1 such that

∀x ∈ CN , ∀u ∈ U , γ1(∥x∥) ≤ ℓ(x, u). (2.6)

Assumption 2.2 (Upper bound of Vf (·)) There exists a function γ2 ∈ K∞ such that

∀x ∈ Xf , Vf (x) ≤ γ2(∥x∥). (2.7)

In addition, the terminal cost function Vf (·) satisfies local decrease condition

∀x ∈ Xf , ∃u ∈ U , Vf (f(x, u))− Vf (x) ≤ −ℓ(x, u). (2.8)

At this point, we are ready to recall the stability result as follows.

Theorem 2.1 (Asymptotic stability) Suppose Assumptions 2.1 and 2.2 hold. There
exist β1, β2 ∈ K∞ such that for all x ∈ CN ,

β1(∥x∥) ≤V 0
N (x) ≤ β2(∥x∥),

V 0
N (f(x, κN (x)))−V 0

N (x) ≤ −β1(∥x∥).
1A function belongs to class K∞ if it is continuous, zero at the origin, strictly increasing, and

unbounded.

17



Chapter 2. Preliminaries

The origin is asymptotically stable in CN for the model predictive controlled dynam-
ics (2.5).

Proof: The proof can be found in [1, Theorem 2.19]. □

Theorem 2.2 (Exponential stability) Suppose Assumptions 2.1 and 2.2 hold in the
case that the K∞ functions γ1 (·) and γ2 (·) are replaced by functions α1∥ · ∥σ and
α2∥ · ∥σ respectively, with α1, α2, σ > 0. Then, there exists a1, a2, σ > 0 such that for
all x ∈ CN ,

a1∥x∥σ ≤V 0
N (x) ≤ a2∥x∥σ,

V 0
N (f(x, κN (x)))−V 0

N (x) ≤ −a1∥x∥σ.

The origin is exponentionally stable in CN for the model predictive controlled dynam-
ics (2.5).

Proof: The proof can be found in [1, Theorem B.19]. □

Some variants of the MPC scheme introduced in this section, such as MPC without
the terminal ingredients, MPC with zero terminal ingredients (i.e., Xf = {0} and
Vf (·) ≡ 0) and MPC with economic performance index (also known as economic MPC)
can be found in the books [1], [2].

2.2 Formulation of Robust MPC

This section considers the uncertain discrete-time systems, described by

x+ = f(x, u, w). (2.9)

where x ∈ Rn represents the current state, u ∈ Rm stands for the current input, w ∈ Rs

represents the uncertainty, and f : Rn×Rm×Rs → Rn denotes the transition map. This
map assigns the state x+ ∈ Rn at the subsequent time instant for each combination of
state, control, and uncertainty (x, u, w). Typically, the controller assumes that a control
input u is applied at the current state x, while the uncertainty w remains unknown.

The system (2.9) are subject to the following hard constraints

(x, u, w) ∈ X × U ×W, (2.10)
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where X ⊆ Rn is assumed to be closed, and U ⊆ Rm andW ⊆ Rs are assumed to be
compact and contain the origin in their interior. Let us denote

Ξ := {µ | µ : Rn → Rm}

as the set of control laws. The control policy associated with the underlying robust
optimal control problem is a sequence of control laws, specified by

µN−1 = {µ0, µ1, . . . , µN−1} (2.11)

for a given prediction horizon N ∈ N, where µk ∈ Ξ for each relevant k.

For a state x ∈ Rn, robust MPC proceeds by solving the following finite-horizon,
min-max optimal control problem

min
µN−1

max
wN−1∈WN

N−1∑
k=0

ℓR(xk, µk(xk), wk) + V R
f (xN ), (2.12a)

s.t. xk+1 = f(xk, µk(xk), wk), ∀k ∈ {0, 1, . . . , N − 1}, (2.12b)
(xk, µk(xk)) ∈ X × U , ∀k ∈ {0, 1, . . . , N − 1}, (2.12c)
x0 = x, (2.12d)
xN ∈ Xf ⊆ X . (2.12e)

Here, we denote the disturbance sequence as wN−1 := (w⊤
0 , w

⊤
1 , . . . , w

⊤
N−1)

⊤. The
stage cost ℓR : Rn ×Rm ×Rs → R≥0 and terminal cost V R

f : Xf → R≥0 are assumed
to be continuous and positive definite.

Definition 2.3 A set Ω ⊆ X is called robust positively invariant for the system x+ =

f(x,w) and constraints (x,w) ∈ X ×W ⊆ Rn × Rs if and only if for all x ∈ Ω and
all w ∈W , it holds that f(x,w) ∈ Ω.

The terminal set Xf is assumed to be closed and robust positively invariant for the local
dynamics x+ = f(x, κf (x), w), where κf ∈ Ξ, subject to constraints (x, κf (x), w) ∈
X × U ×W . The local control law κf : Rn → Rm is commonly determined offline.
In addition, the corresponding maximal robust positively invariant set Xf is typically
desired. The set of admissible control policies is given by

∀x ∈ Rn, ΠR
N (x) = {µN−1 : relations (2.12b)− (2.12e) hold} .
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The effective domain for the min-max robust optimal control problem (2.12) is specified
by

CRN =
{
x : ΠR

N (x) ̸= ∅
}
.

Within the above setting, the infinite–dimensional min-max optimization problem (2.12)
is well posed. The optimal solutions of the infinite–dimensional min-max optimal
control problem (2.12) are denoted by

∀x ∈ CRN , µ0
N−1(x).

The min-max robust MPC controller implicitly evaluates the control law κN : CRN → U ,
defined by

∀x ∈ CRN , κRN (x) = µ0
0(x), (2.13)

which leads to the closed-loop uncertain dynamics

∀x ∈ CRN , x+ = f(x, κRN (x), w). (2.14)

Analogous to Assumptions 2.1 and 2.2 in Section 2.1, stabilizing conditions are imposed
on the stage and terminal cost functions, ℓ and Vf , to guarantee the stability of the
resulting controlled uncertain dynamics (2.14).

Assumption 2.3

• There exists a function γ1 ∈ K∞ such that

∀(x, u, w) ∈ X × U ×W, γ1(∥x∥) ≤ ℓR(x, u, w). (2.15)

• There exists a function γ2 ∈ K∞ such that

∀x ∈ Xf , V R
f (x) ≤ γ2(∥x∥). (2.16)

In addition, the terminal set Xf contains the origin in its interior, and the terminal
cost function V R

f (·) satisfies local decrease condition

∀x ∈ Xf , V R
f (f(x, κf (x), 0))− V R

f (x) ≤ −ℓR(x, κf (x), 0). (2.17)

Theorem 2.3 Suppose Assumption 2.3 hold. The robust model predictive controlled
dynamics (2.14) is asymptotically stable with respect to a robust positively invariant set
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for dynamics (2.14) and constraints (2.10). If the condition (2.17) in Assumption 2.3 is
replaced by

∀x ∈ Xf , ∀w ∈ W, V R
f (f(x, κf (x), w))− V R

f (x) ≤ −ℓR(x, κf (x), w), (2.18)

then the origin is asymptotically stable in CRN for the min-max robust model predictive
controlled dynamics (2.14).

Proof: The detailed proof and discussion can be found in [1, Chapter 3]. □

2.2.1 Tube-Based Robust MPC Formulation

This subsection is mainly reviewed from a collection of articles [3]–[7].

We denote the closed-loop set propagation function as

f(X,µ) = {f(x, µ(x), w) : x ∈ X, w ∈W} , (2.19)

for all sets X ∈ Rn and all control laws µ ∈ Ξ. Then, for a state x ∈ Rn, a tube-based
robust optimal control problem is given, with XN = (X0, X1, . . . , XN ), by

min
XN ,µN−1

N−1∑
k=0

L(Xk, µk) + Lf (XN ). (2.20a)

s.t. Xk+1 ⊇ f(Xk, µk), ∀k ∈ {0, 1, . . . , N − 1}, (2.20b)
Xk ⊆ X , µk ∈ Ξ, ∀k ∈ {0, 1, . . . , N − 1}, (2.20c)
x ∈ X0, (2.20d)
XN ⊆ Xf ⊆ X . (2.20e)

Here, the stage and terminal cost functions are defined as L : Cn × Ξ → R and
Lf : Cn → R, where Cn denotes the set of compact sets in Rn, and they are assumed
to be continuous. The terminal constraint set Xf is also assumed to be closed and
robust positively invariant for the local dynamics x+ = f(x, κf (x), w) and constraints
(x, κf (x), w) ∈ X × U ×W , i.e., it satisfies the following set-algebraic condition

f(Xf , κf ) ⊆ Xf ⊆ X , with κf ∈ Ξ.

Within the above setting, the optimization problem (2.20) is well-posed such that there is
a solution exists for a state x in its feasible set [5]. In addition, the tube MPC controller
resulting from (2.20) is recursive feasible.
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The set of admissible control policies for (2.20) is given by

∀x ∈ Rn, ΠT
N (x) = {µN−1 : relations (2.20b)− (2.20e) hold} .

The effective domain for the tube optimal optimal control problem (2.20) is specified by

CTN =
{
x : ΠT

N (x) ̸= ∅
}
.

Now, we denote the optimal solutions of the tube optimal control problem (2.20) by

∀x ∈ CTN , X0
N (x) and µ0

N−1(x).

Using the optimal solution µ0
N−1 (·), one defines the tube MPC policy κTN : CTN → U as

∀x ∈ CTN , κTN (x) = µ0
0(x),

such that the closed-loop tube model predictive controlled uncertain dynamics is specified
by

∀x ∈ CTN , x+ = f(x, κTN (x), w). (2.21)

The resulting tube model predictive controlled uncertain system is guaranteed to be
asymptotically stable with mild assumptions given in [5].

In the rest of this section, we delve into a specific scenario where the tube model
predictive control system is ensured to stabilize towards a minimal robust positively
invariant set. Let XO be the minimal robust positive invariant set for the the local
dynamics x+ = f(x, κf (x), w) and constraints (x, κf (x), w) ∈ X × U ×W . This set
can be alternatively characterized by the following set-equation

f(XO, κf ) = XO.

The conditions determining the existence and uniqueness of the minimal robust positively
invariant set XO are detailed in [8].

Because the computational cost of (2.20) is usually prohibitive, it desirable for one
to obtain a computational tractable tube-based model predictive control. One popular
way is to parametrize the tube XN . Suppose that a sequence of nominal states
zN := (z⊤0 , z

⊤
1 , . . . , z

⊤
N )⊤, generated by the nominal system z+ = f(z, µ(z), 0), with

µ ∈ Ξ, satisfies the condition

∀k ∈ {0, 1, . . . , N}, zk ∈ Xk.
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2.2. Formulation of Robust MPC

If zN is used as part of the parameters of the tube XN , we can replaces the stage and
terminal functions, L and Lf , by

ℓ̃ : Rn × Rm → R≥0 and Ṽf : Rn → R≥0,

respectively. Additionally, ℓ̃ and Ṽf are assumed to be continuous. Now, the tube optimal
control problem, with parameterized nominal states, is described as

V 0
N (x) = min

XN ,µN−1

N−1∑
k=0

ℓ̃(zk, µk(zk)) + Ṽf (zN ), (2.22a)

s.t. zk+1 = f(zk, µk(zk), 0), ∀k ∈ {0, 1, . . . , N − 1}, (2.22b)
Xk+1 ⊇ f(Xk, µk), ∀k ∈ {0, 1, . . . , N − 1}, (2.22c)
zk ∈ Xk ⊆ X , µk ∈ Ξ, ∀k ∈ {0, 1, . . . , N − 1}, (2.22d)
x− z0 ∈ X0, (2.22e)
XN ⊆ Xf ⊆ X . (2.22f)

Here, note that zN is partial components of the underlying parameters that represent the
tube XN . Within the above setting, this optimization problem is well-formulated. Now,
we denote the set of admissible control policies for (2.22) by

∀x ∈ Rn, Π̃N (x) = {(XN ,µN−1) : relations (2.22b)− (2.22f) hold} .

The effective domain for (2.22) is specified by

C̃N =
{
x : Π̃N (x) ̸= ∅

}
.

Now, we denote the optimal solutions of the parameterized tube optimal control
problem (2.22) by

∀x ∈ C̃N , X0
N (x) and µ0

N−1(x).

Using the optimal solution µ0
N−1 (·), one defines the resulting closed-loop policy as

∀x ∈ C̃N , κ̃N (x) = µ0
0(x),

so that the closed-loop tube model predictive controlled uncertain dynamics

∀x ∈ C̃N , x+ = f(x, κ̃N (x), w). (2.23)

Let us define |x|A := infa∈A ∥x − a∥ as the distance of a point x ∈ Rn from a set
A ⊆ Rn. We make uses of the following assumption.
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Assumption 2.4

• The stage cost ℓ̃ is equal to zero when x ∈ XO and the local terminal control law
κf is applied, i.e.,

∀x ∈ XO, ℓ̃(x, κf (x)) = 0.

• There exists a function γ1 ∈ K∞ such that

∀(x, u) ∈ X × U , γ1(∥x∥XO) ≤ ℓ̃(x, u). (2.24)

• There exists a function γ2 ∈ K∞ such that

∀x ∈ Xf , Ṽf (x) ≤ γ2(∥x∥). (2.25)

In addition, the terminal cost function Ṽf (·) satisfies the local decrease condition

∀x ∈ Xf , ∀w ∈ W, Ṽf (f(x, κf (x), w))− Ṽf (x) ≤ −ℓ̃(x, κf (x)). (2.26)

Theorem 2.4 (Robust asymptotic stability and exponential stability) Suppose Assump-
tion 2.4 hold. The minimal robust positively invariant set XO is robust asymptotically
stable for the uncertain dynamics (2.23) with a region of attraction being equal to
the set C̃N . Furthermore, if the K∞ functions γ1 (·) and γ2 (·) in Assumption 2.4 are
replaced by functions α1∥ · ∥σ and α2∥ · ∥σ respectively, with α1, α2, σ > 0, then the
minimal robust positively invariant setXO is robust exponentially stable for the uncertain
dynamics (2.23) with a region of attraction being equal to the set C̃N .

Proof: The proof can be found in [1], [3]. □

2.3 Formulation of Stochastic MPC

When the distribution of stochastic system uncertainty is well-characterized, it is more
intuitive to leverage stochastic MPC. This approach exploits stochasticity to alleviate the
conservatism associated with robust MPC and can even handle unbounded stochastic
uncertainty.

In stochastic MPC, similar to robust MPC, the system to be controlled is typically
described by the following stochastic system

x+ = f(x, u, w), with w ∼ ω,
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in which ω denotes a probability distribution. The support set of the probability
distribution ω is given byW ⊆ Rs, i.e., we have

ω(W) = 1.

In contrast to robust MPC, where we assumeW is compact, in the context of stochastic
MPC, the setW can be unbounded.

Similar to robust MPC, for a given prediction horizon N ∈ N, the decision variable is
typically assumed to be a policy

µN−1 = {µ0, µ1, . . . , µN−1}, (2.27)

where µk ∈ Ξ for each relevant k, and Ξ := {µ | µ : Rn → Rm} is defined as the set of
control laws mapping a state x to a control input u.

The cost most commonly minimized online is defined as follows:

JN (x,µN−1) = E

[
N−1∑
k=0

l(xk, µk(xk)) + lf (xN )

∣∣∣∣∣x0 = x

]
, (2.28)

where xk denotes the predicted states given the current state x0 = x, control laws
control policy µN−1 and disturbance sequence wN−1 = {w0, w1, . . . , wN−1}, i.e., for
all k ∈ {0, 1, . . . , N − 1}, xk+1 = f(xk, µk(xk), wk) with x0 = x. The functions
ℓ : Rn × Rm → R≥0 and Vf : Xf → R≥0 are know as the stage and terminal cost,
respectively. The expectation E (·) evaluated with respect to the probability distribution
of the underlying probability space. Other cost functions are also occasionally used in
the community, such as nominal certainty-equivalent cost and sample average cost.

Naturally, the minimization of the cost function (2.28) is performed while adhering to
constraints on system states and/or inputs to ensure a degree of safety for the controlled
system. While ensuring satisfaction of the hard constraints x ∈ X and u ∈ U , as in
robust MPC, is desirable, these constraints are often deemed overly conservative or
even unnecessary in certain application scenarios. The most commonly investigated
constraints in stochastic MPC is the so-called chance constraints, which guarantees that
the probability of constraint violation is less than a specified value. Suppose the set of
safe states X is represented as follows

X = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 1} , (2.29)

where gi : Rn → R is a measurable function for each i ∈ I, with I := {1, 2, . . . , nX }
being a finite index set.
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The stage-wise chance constraints are described as

Pr(x ∈ X ) = Pr( gi(x) ≤ 1, for all i ∈ I) ≥ p, (2.30)

where p ∈ (0, 1) is a modeling parameter. The notation Pr (·) is the probability measure
of the underlying probability space. The constraint (2.30) ensures that the state x must
remain within the set X with a probability not less than the designated confidence level
p.

The individual chance constraints, which are very commonly used in stochastic MPC
literature, are of the form

Pr( gi(x) ≤ 1) ≥ pi, ∀i ∈ I, (2.31)

where for all i ∈ I, pi ∈ (0, 1) are the designated confidence levels. These constraints
only ensure satisfaction with respect to the constraint function gi independently, which is
less meaningful compared to stage-wise chance constraints (2.30), The reason is that in
many application scenarios, we aim for the entire group of constraints representing the
safe set X to be satisfied simultaneously. The popularity of individual chance constraints
is very likely due to the fact that some type of these constraints can be accounted for in
an analytical way or some other tractable ways. In a very conservative manner, one can
make use of the individual chance constraints (2.31) to approximate stage-wise chance
constraint (2.30) by choosing

∑
i∈I pi ≥ p− 1 +N .

As already pointed in the introduction, this thesis is also concerned with the mission-wide
chance constraint

Pr
(
xk ∈ X , for all k ∈ {1, 2, . . . , N̄}

)
≥ q, (2.32)

where N̄ ∈ N denotes mission duration (or the length of the control task) and pa-
rameter q ∈ (0, 1) is the designated confidence level. Unlike the state-wise chance
constraint (2.30), which enforces safety certificate on the single stage, the safety certifi-
cate provided by the mission-wide chance constraint is on the state trajectory. The the
safety certificate on the state trajectory provided by the state-wise chance constraint is
pN̄ , which tends to zero when the mission duration N̄ is large. The intuitive reason
behind this issue is that stage-wise chance constraints neglect couplings over the states
at different stages resulting from the system’s dynamics. A more detailed commons are
presented in Section 7.2.2.

Remark 2.1 Other types of constraints defined on the random state x are also en-
countered in the literature, One of these studied constraints is expectation constraint.
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Suppose the probability distribution of the random state x is given by ρ, i.e., x ∼ ρ. The
stage-wise chance constraint on x can also be defined as follows

g(ρ) := Pr(x ∈ X ) :=
∫
X

1 dρ :=

∫
X
1X (x) ρ(dx) := ρ(X ) ≥ p

where 1X denotes the indicator function of some set X , defined by 1X (x) = 1 if x ∈ X
and 0 otherwise. The expectation constraint is formulated as follows

g(ρ) := E[x] :=
∫

cdρ :=

∫
X
c(x) ρ(dx) ≥ pe.

where the measurable function c : X → R is a constraint function of the state x so that
we would like to keep its average value no worse than pe ∈ R. Notice that the stage-wise
chance constraint is a special case of this expectation constraint if we set c = 1X and
p = pe. The other forms of chance constraints can be similarly formulated as a special
case of the expectation cost as well.

When the cost function (2.28) and stage-wise chance constraint (2.10) are considered, the
stochastic optimal control problem, with prediction horizon N ∈ R, can be formulated
as follows

min
µN−1

E

[
N−1∑
k=0

l(xk, µk(xk)) + lf (xN )

]
(2.33a)

s.t. xk+1 = f(xk, µk(xk), wk), wk ∼ ω, ∀k ∈ {0, 1, . . . , N − 1}, (2.33b)
Pr(xk ∈ X ) ≥ pk, ∀k ∈ {1, . . . , N}, (2.33c)
µk(xk) ∈ U , ∀k ∈ {0, . . . , N − 1}, (2.33d)
x0 = x, (2.33e)

where x is the current state, and pk ∈ (0, 1) for each relevant k. In some application
scenarios, if appropriate, the hard input constraints (2.33d) can be replaced by the chance
constraints

Pr(µk(xk) ∈ U) ≥ puk , ∀k ∈ {0, . . . , N − 1},

with puk ∈ (0, 1) for each relevant k. Stochastic MPC proceeds by repeatedly solving the
optimization problem (2.33) at each time step and applying the first optimized control
law to the current state.

Computational aspects The decision variable µ represents a control policy, residing
in an infinite-dimensional function space. Thus, µ is usually parameterized to simplify
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optimization. Despite this, the computation of the expected cost (2.33a) and the chance
constraints (2.33c) can still be intractable. In practice, one usually either reformulates
them into more tractable forms in a conservative manner or relies on assumptions about
the systems (e.g., linear systems) and uncertainties (e.g., Gaussian disturbances).

Recursive feasibility, stability and convergences Roughly specking, there is no
satisfying, unified framework to ensure these control-theoretic properties. For recursive
feasibility, one popular way is to combines robust constraints with the chance constraints
of the controlled system by assuming that the disturbance support setW is bounded.
Another group of methods for ensuring recursive feasibility relies on the support of the
associated nominal controlled systems. A rigorous treatment of stabilizing conditions
stems from the theory of stability of discrete-time, controlled stochastic processes [9].
Various Convergences results can be found in the literature such as almost sure and in
probability convergences of value function or closed-loop states. The relevant review of
the relevant work can be found in Chapter 4 and 5. A more detailed review can be found
in, for instance, [1, Section 3.7] [10, Chapter 7] and [11].

2.3.1 Mission-Wide Chance-Constrained Optimal Control

As argued in the above and Section 1.2, mission-wide chance constraints is, in general,
more meaningful in defining safety on the system. In this subsection, we replace the
stage-wise chance constraints in (2.33) with mission-wide chance constraint and remove
the hard input constraints in (2.33). The resulting mission-wide chance-constrained
stochastic optimal control problem is specified by

min
µN−1

E

N̄−1∑
k=0

l(xk, µk(xk)) + lf (xN )

 , (2.34a)

s.t. xk+1 = f(xk, µk(xk), wk), wk ∼ ω, ∀k ∈ {0, 1, . . . , N̄ − 1}, (2.34b)
Pr

(
xk ∈ X , for all k ∈ {1, . . . , N̄}

)
≥ p (2.34c)

x0 = x. (2.34d)

We will tackle this problem precisely using dynamic programming in Chapter 6, and
explore approximate solutions through stochastic MPC in Chapter 7. Problem (2.34)
has also been explored within the realm of dynamic consistency and risk measures in
multistage stochastic programming, as seen in works such as [12]–[14], and it has been
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approximately solved using reinforcement leaning [15]. Similar investigations have
also been reported in the field of constrained Markov Decision Processes, particularly
concerning expectation constraints [16], [17].
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Chapter 3

Tube MPC with Time-Varying
Cross-Sections

This Chapter is based on the following paper under review:

Kai Wang, Sixing Zhang, Sébastien Gros and Saša V. Raković. Tube MPC with
Time-Varying Cross-Sections. Accepted to IEEE Transactions on Automatic Control,
2024.

3.1 Introduction

Model Predictive Control (MPC) is a widely used, modern, optimization-based control
technique [1], [2]. Robust MPC is an improved form of MPC, inherently designed
to maintain stability, performance and constraint satisfication even in the face of
uncertainty [3]. The range of robust MPC proposals includes open-loop minimax robust
MPC [4], [5], theoretically complete and computationally intensive closed-loop robust
MPC [6], [7], robust MPC based on dynamic programming [2], [8], disturbance affine
feedback MPC [9], [10] and tube MPC [11]–[19] offering theoretically flexible and
computationally tractable methods.

As pointed out in the review articles [3], [20], tube MPC has emerged as a leading
paradigm for robust MPC due to its intuitive ease, computational simplicity and
guaranteed control-theoretic properties. Based on the early tube MPC proposals [11],
[12], a sequence of articles appeared over the last two decades, which has defined
the state-of-the-art of tube MPC. The developed tube MPC methods include the so-
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called rigid tube MPC [13], homothetic tube MPC [15], [16], elastic tube MPC [18],
parameterized tube MPC [17] and configuration-constrained tube MPC [21] for linear
systems. Extensions of tube MPC for nonlinear systems have been investigated [22]–
[25]. Tube MPC is also utilized within the contexts of robust output feedback MPC
synthesis [26]–[28] and safe learning based control methods [29], [30]. More recently,
the rigid tube MPC using implicit representations of terminal set and tube cross-section
sets was also proposed in [14], which is applicable to potentially very high-dimensional
systems.

The primary focus of this chapter is to refine the early and simple, but yet computationally
effective, tube MPC methods [11]–[13] for linear systems with bounded disturbances. The
tube MPC proposals [11]–[13] are effectively concerned with the same problem and have
in common both their computational simplicity and strong control-theoretic properties.
These methods are computationally efficient since they reduce to a conventional MPC
when applied to a deterministic nominal system subject to modified stage constraints,
appropriate terminal constraints, and disturbace-free stage and terminal cost functions.
These methods also provide guarantees of robust convergence/stability and robust positive
invariance. At the conceptual level, all these methods employ a rather simple state and
control parameterization and an affine control policy in solving the tube optimal control
problems. On the other hand, proposals [11]–[13] differ in terms of local uncertainty
propagation, nominal state initialization and modified constraints as well as utilized
cost functions. Roughly speaking, these differences lead to different features of these
proposals, and each proposal has its own advantages and disadvantages, as discussed in
more details in Section 3.5.1.

In this chapter, we revisit the early tube MPC methods [11]–[13] and report a refinement
of these methods. The mixed state and control constraints are considered, which are
more general than the separate state and control constraints specified in [11]–[13]. A
novel state decomposition strategy, that further decomposes the local uncertainty into
two components, is proposed. Based on this new decomposition strategy, we propose a
tube MPC method that improves both robust convergence of [11] and robust asymptotic
stability of [12] to robust exponential stability, and it enlarges the effective domains
of [12], [13] to a robust positively invariant set that is identical with the effective domain
of [11] by construction. Moreover, based on the idea of [14], the support function
is employed in constraint tightening to avoid the computationally expensive, explicit
construction of tube cross-section sets. Due to the employment of support functions, the
disturbance set, which contains the origin in its interior, need not be polytopic; it merely
requires being convex and compact.
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3.2. Problem Setup

The rest of this chapter is organized as follows. Section 3.2 presents the problem
setup and the objectives of this chapter. Section 3.3 describes the constraints on the
employed tubes and specifies the set of admissible decision variables, and it gives the
utilized cost functions. Section 3.4 proposes the improved tube MPC and analyzes its
control-theoretic properties. Section 3.5 provides a detailed comparison and offers two
numerical illustrations. Section 3.6 ends this chapter with concluding remarks.

3.1.1 Basic Nomenclature and Conventions

The sets of real numbers, non-negative integers and positive integers are denoted by
R, N, respectively. Given a, b ∈ N, with a < b, we use the notation N[a:b] to denote
the set of non-negative integers {a, a+ 1, . . . , b}. We denote N[0:b] by Nb. Given with
p ∈ N+ ∪ {∞}, the p-norm of a vector x ∈ Rn is denoted by ∥x∥p, while Bnp denotes
the corresponding closed unit p-norm ball. For convenience, we denote the Euclidean
norm ∥ · ∥2 by ∥ · ∥. The Minkowski sum and Pontryagin difference of nonempty sets X
and Y in Rn are

X ⊕ Y := {x+ y : x ∈ X , y ∈ Y} and
X ⊖ Y := {x : ∀y ∈ Y, x+ y ∈ X} ,

respectively. The image of a nonempty set X under a matrix of compatible dimensions
M is given by MX := {Mx : x ∈ X}. Likewise, if M is a square matrix, for any
integer k ∈ N, MkX :=

{
Mkx : x ∈ X

}
. A proper D–set in Rn is a closed convex

subset of Rn that contains the origin in its interior. A proper C–set in Rn is a bounded
proper D–set in Rn. The intersection of finitely many closed half–spaces is a polyhedral
set. A polytopic set is a bounded polyhedral set. The support function h(X , ·) of a
nonempty, closed, convex set X ⊆ Rn is given, for all y ∈ Rn, by

h (X , y) := sup
x
{y⊤x : x ∈ X}.

Finally, we do not distinguish row vectors from column vectors unless necessary.

3.2 Problem Setup

3.2.1 System and Constraints

We consider discrete-time linear, time-invariant, uncertain systems given by

x+ = Ax+Bu+ w, (3.1)
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where x ∈ Rn, u ∈ Rm and w ∈ Rn are, respectively, the current state, control and
disturbance, and x+ ∈ Rn denotes the successor state. The matrix pair (A,B) ∈
Rn×n × Rn×m is a priori given and constant. At any current time, the state x is known,
while the disturbance w is unknown but obeys the constraint

w ∈ W. (3.2)

Throughout this chapter, we consider mixed polyhedral state and control constraints

(x, u) ∈ Y with Y :=
{
(x, u) : ∀i ∈ IY , c⊤i x+ d⊤i u ≤ 1

}
. (3.3)

We make the following standing assumptions on the system (3.1) and constraints (3.2)–
(3.3).

Assumption 3.1

• The matrix pair (A,B) ∈ Rn×n × Rn×m is known, and it is strictly stabilizable.

• The disturbance constraint setW ⊆ Rn is a proper C–set.

• The index set IY := {1, 2, . . . , nY}, with nY ∈ N+, is finite, and for all i ∈ IY ,
(ci, di) ∈ Rn+m are known. The set Y is a polyhedral proper D–set, and its
representation are irreducible.

3.2.2 State Decomposition

In this chapter, the parameterized state and control predictions and an affine control
policy are employed. For a state x ∈ Rn, a control policy ΠN−1 (·) is a sequence of
affine control laws {πk (·, ·, ·, ·)}k∈NN−1

, each term of which is parametrized via points
xk ∈ Rn, zk ∈ Rn and vk ∈ Rm and an a priori specified control matrix K ∈ Rm×n as
follows

∀k ∈ NN−1, πk(xk, zk, vk, x) := vk +K(xk − zk), (3.4)

so that
∀k ∈ NN−1, xk+1 = Axk +B(vk +K(xk − zk)) + wk, (3.5)

starting from x0 = x.
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Assumption 3.2 The matrix K ∈ Rm×n is known, and it is such that the matrix
AK := A+BK is strictly stable.

The sequences {zk}k∈NN
and {vk}k∈NN−1

satisfy the following nominal dynamics

∀k ∈ NN−1, zk+1 = Azk +Bvk. (3.6)

The predicted states are decomposed into three components

∀k ∈ NN , xk = zk + s̄k + s̃k. (3.7)

The nominal component zk follows from the nominal controlled dynamics (3.6), and the
local uncertain components s̄k and s̃k are specified by the following two dynamics

∀k ∈ NN−1, s̄k+1 = AK s̄k with s̄0 = x− z0, and (3.8)
∀k ∈ NN−1, s̃k+1 = AK s̃k + wk with s̃0 = 0. (3.9)

The initial local uncertainty s̄0, which is a decision variable to be optimized, represents
the deviation of the current state x from the initial nominal state z0. Note that the
component s̄k evolves through the deterministic dynamics (3.8) starting from s̄0, while
the component s̃k evolves through the uncertain dynamics (3.9) starting from the origin.
It is easy to verify that dynamics (3.5) is the superposition of dynamics (3.6), (3.8)
and (3.9).

3.2.3 Tube Parameterization

The effect of the uncertainty s̃k is accounted for by employing the set-dynamics

∀k ∈ NN−1, S̃k+1 = AK S̃k ⊕W with S̃0 = {0}, (3.10)

induced by the local uncertainty dynamics (3.9) and the disturbance setW . It follows
from (3.10) that

∀k ∈ N[1,N ], S̃k =

k−1⊕
i=0

Ai
KW and S̃0 = {0}. (3.11)

The state tube is a sequence of sets, denoted by XN := {Xk}k∈NN
, in which each set

Xk ⊆ Rn is parameterized via zk ∈ Rn, s̄k ∈ Rn and the set S̃k ⊆ Rn as follows

∀k ∈ NN , Xk := zk + s̄k ⊕ S̃k. (3.12)

For all k ∈ NN , zk + s̄k and S̃k are, respectively, the centers and cross-sections of the
tube XN .
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3.2.4 Chapter Objectives

As discussed in the critique article [31], exploring the differences of the competing
methods [11], [12] is necessary to gain some inspirations for the current research on
both robust and stochastic MPC. In this chapter, we introduce an improved tube MPC
that combines best principal components of [11] and [12], as well as the rigid tube
MPC [13]. More specifically, the improved tube MPC holds a prediction tube XN with
time-varying cross-sections identical with [11], while it makes use of the stage cost
and terminal ingredients design from [12], [13]. The initialization of the nominal state
prediction is compatible with [13].

3.3 Tube Constraints, Decision Variables and Cost Function

This section outlines a tube initialization strategy that utilizes the maximal robust
positively invariant set. This section also discusses the tube stage and terminal constraints
and their constructions with the aid of the support functions, and it specifies the set of
admissible decision variables and the employed cost function.

3.3.1 Initialization

This chapter adopts the initialization strategy as follows

s̄0 = x− z0 and s̄0 ∈ Xf . (3.13)

Assumption 3.3 The set Xf ⊆ Rn is the maximal robust positively invariant set for the
system x+ = AKx+ w, and constraints (x,Kx) ∈ Y and w ∈ W .

The maximal robust positively invariant set Xf is the limit of the following standard set
iteration [32]

∀j ∈ N, Xj+1 := {x : AKx ∈ Xj ⊖W}
⋂
X0 with

X0 := {x : (x,Kx) ∈ Y},

i.e., Xf := X∞. It is known that the maximal robust positively invariant set [32] is
nonempty if and only if the minimal robust positively invariant setXO for x+ = AKx+w
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with w ∈ W , specified by

XO :=
∞⊕
j=0

Aj
KW, (3.14)

is a subset of X0. The polyhedral structure of the limit set X∞, however, is not
necessarily guaranteed when the limit is not finitely determined. It is also well known
that the set X∞ is finitely determined when one of the iterates Xj is bounded and
XO ⊆ interior(X0) [32]. More generally, the maximal robust positively invariant set
is finitely determined when Xj ⊆ Xj+1 for some j ∈ N, in which case X∞ = Xj is
finitely determined and it is nonempty when, in addition, XO ⊆ X0.

Throughout this chapter, we assume that Xf is finitely determined and nonempty (thus,
Xf is at least a polyhedral proper D–set in Rn) andXO is strictly admissible with respect
to the stage constraints (i.e., that, for all x ∈ XO, we have (x,Kx) ∈ interior(Y)).
These natural conditions are summarized by the following assumption.

Assumption 3.4

• The set Xf ⊆ Rn is a polyhedral proper D–set, and its irreducible representation
is given, for known vectors ri ∈ Rn, i ∈ IXf

:= {1, 2, . . . , nf} with nf ∈ N+, by

Xf := {x : ∀i ∈ IXf
, r⊤i x ≤ 1}. (3.15)

• The set XO is such that XO ⊆ interior(X0), or, equivalently its support function
satisfies

∀i ∈ IY , h
(
XO, ci +K⊤di

)
< 1. (3.16)

3.3.2 Stage Constraints

Based on the tube cross-section sets Xk in (3.12) and the affine control laws πk (·, ·, ·, ·)
in (3.4), the tube stage constraints take the form

∀k ∈ NN−1, (zk, s̄k, vk) ∈ Gk with

Gk :=
{
(z, s̄, v) : ∀s̃ ∈ S̃k, (z + s̄+ s̃, v +Ks̄+Ks̃) ∈ Y

}
. (3.17)

To handle these constraints in a computationally practicable manner, we make use of the
support functions of sets S̃k, which allows us to avoid the explicit implementation of
the underlying set-algebraic operations. By applying [14, Proposition 1], the structural
properties of sets Gk, k ∈ NN−1 can be summarized by the following proposition.
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Proposition 3.1 Suppose Assumptions 3.1, 3.2 and 3.4 hold. For all k ∈ NN−1,
the stage constraint sets Gk are polyhedral proper D–sets in R2n+m with (possibly
redundant) representations

Gk :=
{
(z, s̄, v) : ∀i ∈ IY , c⊤i z + η⊤i s̄+ d⊤i v ≤ 1− f(k,i)

}
,

where, for all i ∈ IY , with ηi := ci +K⊤di, the scalars f(k,i) ∈ [0, 1) are specified by

f(k,i) := h
(
S̃k, ηi

)
=

k−1∑
j=0

h
(
W, (Aj

K)⊤ηi

)
. (3.18)

Proof: The claims can be verified by directly applying [14, Proposition 1]. Specifically,
Proposition 1 of [14] applies by replacing the underlying support functions therein with
the evaluation of support functions h

(
S̃k, ηi

)
for all k ∈ NN and all i ∈ nY . In regard

of S̃k specified in (3.11), the equations (3.18) follows from the properties of support
funtions (3.21)–(3.22), as also shown in Lemma 2 of [14]. □

3.3.3 Terminal Constraints

The tube terminal constraint takes the form

(zN , s̄N ) ∈ Hf with Hf :=
{
(z, s̄) : ∀s̃ ∈ S̃N , z + s̄+ s̃ ∈ Xf

}
. (3.19)

Analogously to the construction of sets Gk in Proposition 3.1, the structural properties of
the setHf can be summarized as per the following.

Proposition 3.2 Suppose Assumptions 3.1–3.4 hold. The setHf is a polyhedral proper
D–set in R2n, with a (possibly redundant) representation

Hf := {(z, s̄) : ∀i ∈ IXf
, r⊤i z + r⊤i s̄ ≤ 1− gi},

where, for all i ∈ IXf
, the scalars gi ∈ [0, 1) are specified by

gi := h
(
S̃N , ri

)
=

N−1∑
j=0

h
(
W, (Aj

K)⊤ri

)
. (3.20)
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Proof: The proof is analogous to that of Proposition 3.1. □

In the following two remarks, we discuss the computational aspects of the relevant
scalars f(k,i) and gi.

Remark 3.1 As shown in (3.18) and (3.20), the evaluation of the underlying scalars
f(k,i) and gi requires merely the evaluation of a number of support functions of W .
Moreover, these scalars can be computed by the following simple iterations given, with
f(0,i) = 0 and g(0,i) = 0, by

∀k ∈ NN−2, ∀i ∈ IY , f(k+1,i) = f(k,i) + h
(
W, (Ak

K)⊤ηi

)
∀j ∈ NN−1, ∀i ∈ IXf

, g(j+1,i) = g(j,i) + h
(
W, (Aj

K)⊤ri

)
,

in which we set gi := g(N,i). This process needs one to evaluate h (W, ·) for (N − 1)nY
times to calculate f(k,i), k ∈ N[1:N−1], i ∈ IY and to evaluate h (W, ·) for Nnf times
to calculate gi, i ∈ IXf

.

Remark 3.2 For a polyhedral set given by

X = {x ∈ Rn : ∀i ∈ I, a⊤i x ≤ 1},

where ai ∈ Rn for each i ∈ I and I is a finite index set, the associated support function
is specified by

∀y ∈ Rn, h (X , y) = sup
x
{y⊤x : ∀i ∈ I, a⊤i x ≤ 1},

which is a simple linear programming problem. Likewise, for a polytopic set given by

X = conv{λi ∈ Rn : i ∈ I},

where I is a finite index set and conv denotes the convex hull, the associated support
function is specified by

∀y ∈ Rn h (X , y) = max
i∈I

y⊤λi.

For a closed unit p-norm ball Bnp , the associated support function is specified by

∀y ∈ Rn h
(
Bnp , y

)
= ∥y∥q.
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where p ∈ (1,∞) and q ∈ (1,∞) satisfies 1
p + 1

q = 1, q = ∞ if p = 1 and q = 1 if
p =∞. For an ellipsoidal set

X = {x ∈ Rn : (x− c)⊤M−1(x− c) ≤ r2}

with shape matrix M = M⊤ ⪰ 0, center c ∈ Rn and radius r > 0, the associated
support function is specified by

∀y ∈ Rn, h (X , y) = y⊤c+ r
√

y⊤My.

Additionally, for any nonempty closed convex sets X , X1 and X2 in Rn, and any matrix
M ∈ Rm×n, it holds that

∀y ∈ Rn, h (X1 ⊕X2, x) = h (X1, x) + h (X2, y) and (3.21)

∀ȳ ∈ Rm, h (MX , ȳ) = h
(
X ,M⊤ȳ

)
. (3.22)

3.3.4 Set of Admissible Decision Variables

Within our setting, for a state x ∈ Rn, the variables

zN := (z0, . . . , zN ), s̄N := (s̄0, . . . , s̄N ) and vN−1 := (v0, . . . , vN−1)

determine entirely the state tubes XN and the related control policy ΠN−1 (·), and, thus,
form the decision variable

dN := (zN , s̄N ,vN−1) ∈ RndN (3.23)

with ndN
= 2(N+1)n+Nm. The decision variabledN is required to satisfy dynamical

consistency constraints (3.6) and (3.8), tube initialization constraints (3.13), tube stage
constraints (3.17) and tube terminal constraints (3.19), which are summarized as follows

∀k ∈ NN−1, zk+1 = Azk +Bvk, (3.24a)
∀k ∈ NN−1, s̄k+1 = AK s̄k with s̄0 = x− z0, (3.24b)
∀i ∈ IXf

, r⊤i s̄0 ≤ 1, (3.24c)
∀k ∈ NN−1, ∀i ∈ IY , c⊤i zk + d⊤i vk + η⊤i s̄k ≤ 1− f(k,i) and (3.24d)
∀i ∈ IXf

, r⊤i zN + r⊤i s̄N ≤ 1− gi. (3.24e)

The constraints in (3.24) amount to (2N+1)n affine equality constraints and 2nf+NnY
affine inequality constraints. The set of admissible decision variables DN (x) is given,
for a state x ∈ Rn, by

DN (x) := {dN : relations (3.24) hold}. (3.25)
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3.3.5 Cost

The utilized overall cost VN (·) : RndN → R≥0 associated with the tube XN is specified,
for all dN ∈ RndN , by

VN (dN ) :=

N−1∑
k=0

(
z⊤k Qzk + v⊤k Rvk

)
+ z⊤NPzN . (3.26)

Assumption 3.5 The matrices Q ∈ Rn×n, R ∈ Rm×m and P ∈ Rn×n are all known,
symmetric and positive definite, i.e., Q = Q⊤ ≻ 0, R = R⊤ ≻ 0 and P = P⊤ ≻ 0,
and satisfy the following Lyapunov inequality

A⊤
KPAK ⪯ P −

(
Q+K⊤RK

)
. (3.27)

Within the considered setting, there exist scalars β1 ∈ (0,∞) and β3 ∈ (0,∞) such that,
for all dN ∈ RndN , the overall cost VN (dN ) satisfies

β1∥z0∥2 ≤ z⊤0 Qz0, β1∥z0∥2 ≤ β1∥(zN ,vN−1)∥2 and
β1∥(zN ,vN−1)∥2 ≤ VN (dN ) ≤ β3∥(zN ,vN−1)∥2. (3.28)

3.4 Improved Tube Model Predictive Control

In this section, the tube optimal control problem is formulated and analyzed. Then, we
present the tube model predictive controller and its control-theoretic properties.

3.4.1 Tube Optimal Control

For a current state x ∈ Rn, the tube optimal control problem, labeled by PN (x), reduces
to selection of dN ∈ DN (x) that minimizes VN (dN ) so that, for all x ∈ Rn,

V 0
N (x) := min

dN

{VN (dN ) : dN ∈ DN (x)} and

d0
N (x) := argmin

dN

{VN (dN ) : dN ∈ DN (x)}.

Here, dN is defined in (3.23), VN (dN ) is defined in (3.26), and DN (x) is specified
by (3.25). The effective domain CN of the value function V 0

N (·) and its optimizer d0
N (·),

also known as the N–step controllable set, is

CN := {x : DN (x) ̸= ∅}.

41



Chapter 3. Tube MPC with Time-Varying Cross-Sections

The set of admissible decision variables DN (x), for each x ∈ CN , is a nonempty,
closed polyhedral subset of RndN . Thus, for any given x ∈ Rn, PN (x) is a convex
quadratic programming problem, which is feasible for all x ∈ CN . If we eliminate
the dynamic consistency constraints (3.24b) and replace s̄k with Ak

K(x − z0), for all
k ∈ NN , the decision variable in (3.23) reduces to dN = (zN ,vN−1). The cost function
(zN ,vN−1) → VN (zN ,vN−1) is strictly convex and quadratic. Thus, for all x ∈ CN ,
PN (x) reduces to a strictly convex quadratic programming problem. In this context,
the key properties of the value function V 0

N (·), the optimizer maps z0N (·) and vN−1 (·),
and their effective domain CN can be summarized by the following theorem.

Theorem 3.1 Suppose Assumptions 3.1–3.5 hold, and take any N ∈ N.

• The value function V 0
N (·) is continuous, convex, piecewise quadratic and such

that:

∀x ∈ Xf , V 0
N (x) = 0; (3.29)

∀x ∈ CN \ Xf , 0 < V 0
N (x) <∞. (3.30)

• The optimizer maps z0N (·) and v0
N−1 (·) are continuous, piecewise affine and

such that:

∀x ∈ Xf ,
∥∥(z0N (x),v0

N−1(x)
)∥∥ = 0 and ∥z00(x)∥ = 0, (3.31)

∀x ∈ CN \ Xf ,
∥∥(z0N (x),v0

N−1(x)
)∥∥ > 0 and ∥z00(x)∥ > 0. (3.32)

• The effective domain CN ⊆ Rn is a polyhedral proper D–set and satisfies

Xf = C0 ⊆ . . . ⊆ CN ⊆ Yx, (3.33)

where Yx is the (x, u) 7→ x projection of the set Y .

Proof: The related topological statements follow from the standard properties of
the solution to the considered parametric convex quadratic programming problem
PN (x) and its construction, see [2], [13], [33] for more details. Since x ∈ Xf , it
follows from choosing z0(x) = x − s̄0(x) = 0 with s̄0(x) = x ∈ Xf that zN (x) =

. . . = z0(x) = 0 and vN−1(x) = . . . = v0(x) = 0 are feasible for PN (x). Hence
V 0
N (x) ≤ VN (dN (x)) = 0, with dN (x) = (0, . . . , 0, 0, . . . , 0, x, AKx, . . . , AN−1

K x),
which ensures that (3.29) and (3.31) hold. Likewise, if x ∈ CN \ Xf , the constraint
s̄0(x) ∈ Xf implies that z0(x) = x− s̄0(x) ̸= 0 such that (3.30) and (3.32) hold. The
inclusion relation (3.33) holds true by applying [2, Proposition 2.10]. □
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3.4.2 Tube MPC

The tube model predictive control evaluates implicitly the control law κN (·), specified
by

∀x ∈ CN , κN (x) := v00(x) +K
(
x− z00(x)

)
, (3.34)

and it induces the tube model predictive controlled uncertain dynamics

∀x ∈ CN , x+ ∈ Ax+BκN (x)⊕W. (3.35)

In view of (3.31) in Theorem 3.1, for any x ∈ Xf , z00(x) = 0 and v00(x) = 0. Thus, for
all states x in the terminal constraint set Xf , the tube model predictive control law κN (·)
and its controlled uncertain dynamics (3.35) satisfy

∀x ∈ Xf , κN (x) = Kx and x+ ∈ AKx⊕W. (3.36)

3.4.3 Robust Positive Invariance and Stability

In our setting, Theorem 3.2 establishes the robust positive invariance property of the
effective domain CN (also known as the robust recursive feasibility of the tube optimal
contol problem PN (·)).

Theorem 3.2 Suppose Assumptions 3.1–3.5 hold, and take any N ∈ N. The effective
domain CN is a robust positively invariant set for the dynamics (3.35) and implicitly
induced constraints (x, κN (x)) ∈ Y .

Proof: When N = 0, the statement holds directly by the robust positively invariance
of the set Xf and the controlled dynamics (3.36). For any N ∈ N+, suppose x ∈ CN so
that PN (x) is feasible and the optimizer d0

N (x) =
(
z0N (x), s̄0N (x), v0

N−1(x)
)

exists.
For all w ∈ W , it holds that

x+ = Ax+BκN (x) + w = z01(x) + s̄01(x) + w.

Let us define
dN (x+) :=

(
zN (x+), s̄N (x+), vN−1(x

+)
)
, (3.37)

in which

zN (x+) = (z01(x), . . . , z
0
N (x), AKz0N (x)),

sN (x+) = (s̄01(x) + w, ..., s̄0N (x) +AN−1
K w,AK s̄0N (x) +AN

Kw),

vN−1(x
+) = (v01(x), . . . , v

0
N−1(x),Kz0N (x)).
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In the sequel, we will prove that dN (x+) is feasible for PN (x+), i.e., dN (x+) ∈
DN (x+). The dynamic consistency constraints (3.24a)–(3.24b) are satisfied by the
construction of dN (x+). The tube initialization constraint s̄0(x+) = s̄01(x) + w =

AK s̄00(x)+w ∈ Xf is satisfied by s̄00(x) ∈ Xf and the robust invariance property of Xf ,
i.e., the inequality constraints (3.24c) is satisfied. For all k ∈ NN−1, all w ∈ W and all

∀k ∈ NN−1, ∀w ∈ W, ∀s̃ ∈ S̃k :

zk(x
+) + s̄k(x

+) + s̃ = z0k+1(x) + s̄0k+1(x) +Ak
Kw + s̃

vk(x
+) +Ks̄k(x

+) +Ks̃ = v0k+1(x) +Ks̄0k+1(x) +KAk
Kw +Ks̃

It follows from (3.10) that for all w ∈ W and all s̃ ∈ S̃k, Ak
Kw + s̃ ∈ S̃k+1. Therefore,

it further follows that

∀ŝ ∈ S̃k+1, (z
0
k+1(x) + s̄0k+1(x) + ŝ, v0k+1(x) +Ks̄0k+1(x) +Kŝ) ∈ Y

by the definitions of stage constraints (3.17) and terminal constraints (3.19). Thus, we
have that

∀k ∈ NN−1, ∀s̃ ∈ S̃k, (zk(x
+) + s̄k(x

+) + s̃, vk(x
+) +Ks̄k(x

+) +Ks̃) ∈ Y,

i.e., the inequality constraints (3.24d) are satisfied. For k = N ,

zN (x+) + s̄N (x+)⊕ S̃N = AKz0N (x) +AK s̄0N (x) +AN
Kw ⊕ S̃N

⊆ AKz0N (x) +AK s̄0N (x)⊕ S̃N+1

Since z0N (x) + s̄0N (x)⊕ S̃N ⊆ Xf and by the robust invariance property of Xf ,

AK(z0N (x) + s̄0N (x)⊕ S̃N )⊕W = AKz0N (x) +AK s̄0N (x)⊕ S̃N+1 ⊆ Xf .

Thus, the tube terminal constraints zN (x+) + s̄N (x+)⊕ S̃N ⊆ Xf are satisfied, i.e., the
inequality constraints (3.24e) are satisfied. Hence, we have that dN (x+) ∈ DN (x+),
which further implies that ∀w ∈ W , x+ = Ax+BκN (x) +w ∈ CN and completes the
proof. □

In our setting, the lower and upper bounds of the overall cost VN (·) in (3.28) and
Theorem 3.1 yield the following.

Proposition 3.3 Suppose Assumptions 3.1–3.5 hold, and take any N ∈ N. There exist
two scalars β1 ∈ (0,∞) and β2 ∈ (0,∞) such that, for all x ∈ CN ,

β1∥z00(x)∥2 ≤ V 0
N (x) ≤ β2∥z00(x)∥2, (3.38)

and, for all x ∈ CN and all x+ ∈ Ax+BκN (x)⊕W ,

V 0
N (x+) ≤ V 0

N (x)− β1∥z00(x)∥2. (3.39)
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Proof: The admissible decision variable dN (x+) specified in (3.37) yields the desired
cost decrease, i.e.,

∀x ∈ CN , V 0
N (x+)− V 0

N (x) ≤ VN (x+)− V 0
N (x)

= ∥z0N (x)∥2Q + ∥v0N (x)∥2R + ∥AKz0N (x)∥2P
− ∥z0N (x)∥2P − ∥z00(x)∥2Q − ∥v00(x)∥2R
≤ −∥z00(x)∥2Q − ∥v00(x)∥2R,

where the last inequality holds due to Assumption 3.5. Since there exists β1 > 0 such
that β1∥z00(x)∥2 ≤ ∥z00(x)∥2Q + ∥v00(x)∥2R, it follows that

∀x ∈ CN , V 0
N (x+)− V 0

N (x) ≤ −β1∥z00(x)∥2. (3.40)

It follows from (3.28) that, for all x ∈ CN , there also exists β3 > 0 such that

β1∥z00(x)∥2 ≤ V 0
N (x) ≤ β3∥(z0N (x),v0

N−1(x))∥2. (3.41)

In light of Theorem 3.1, the optimizer maps z0N (·) and v0
N−1 (·) are Lipschitz continuous

since they are continuous and piecewise affine functions defined on the nonempty closed
polyhedral set CN . Thus, we have that for all x ∈ CN and all y ∈ CN ,

∥(z0N (x),v0
N−1(x))− (z0N (y),v0

N−1(y))∥ ≤ L∥x− y∥, (3.42)

in which L > 0 denotes the associated Lipschitz constant. When x ∈ CN is the
current state and y := s̄00(x) ∈ Xf ⊆ CN , we have (z0N (y),v0

N−1(y)) = 0 and
x− y = x− s̄00(x) = z00(x) so that (3.42) yields the following

∀x ∈ CN , ∥(z0N (x),v0
N−1(x))∥ ≤ L∥z00(x)∥. (3.43)

It follows from (3.41) and (3.43) that, with β2 := β3L
2,

∀x ∈ CN , β1∥z00(x)∥2 ≤ V 0
N (x) ≤ β2∥z00(x)∥2. (3.44)

Thus, in view of (3.44) and (3.40), the proposition is proved. □

The main, and relatively direct, ramification of the Proposition 3.3 and Theorem 3.1
and 3.2 is the following.

Theorem 3.3 Assumptions 3.1–3.5 hold, and take any N ∈ N. The maximal robust
positively invariant set Xf is robustly exponentially stable for the dynamics (3.35) with
the domain of attraction being equal to CN .
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Proof: In light of [2, Theorem B.19], Theorems 3.1–3.2 and Proposition 3.3 yield the
statements of Theorem 3.3. □

When AK satisfies Assumption 3.2, it is well-known that the minimal robust positively
invariant set XO is robustly exponentially stable for the uncertain dynamics x+ ∈
AKx⊕W with the domain of attraction being equal to the maximal robust positively
invariant set Xf . In light of (3.36), Theorem 3.3 and a local application of the analysis
in [34], the following refinement of the robust exponential stability is affirmative.

Corollary 3.1 Suppose Assumptions 3.1–3.5 hold, and take any N ∈ N. The set XO
is robustly exponentially stable for the dynamics (3.35) with the domain of attraction
being equal to CN .

Proof: Let the set sequence {Qk ⊆ Rn}k∈N be generated by the following set-dynamics

∀k ∈ N, Qk+1 = AKQk ⊕W with Q0 ⊆ Xf .

Proposition 4.3 of [34] directly implies that, for any setQ0 in the set of compact subsets
of Xf , {Qk}k∈N exponentially convergence to XO in a stable manner with respect to the
Hausdorff distance. Using the facts of Theorem 3.3, the set XO is robustly exponentially
stable for (3.35) with domain of attraction being equal to CN . □

3.5 Discussion

This section first provides a detailed discussion of the similarities and differences for
the proposal in this chapter and the early proposals [11]–[13]. Then, we do numerical
simulations on two case studies to highlight the benefits of the proposed method.

3.5.1 Comparison

State Decomposition and Control Policy: Unlike the proposal in this chapter de-
composing the state predictions into three components, [11]–[13] decompose the state
predictions into two components ∀k ∈ NN , xk = zk + sk with sk denoting the local
uncertainty. Our method and [12], [13] use the control parameterization (3.4), while the
control parameterization of [11] is defined as

∀k ∈ NN−1, uk = Kxk + µk,
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where µk ∈ Rm is a control offset. However, the latter is recovered by a directly algebraic
change of variables

∀k ∈ NN−1, µk = vk −Kzk.

Cost Function: The proposal in this chapter and [12], [13] penalize the nominal state
and control predictions, as defined in (3.26). Proposal [11] penalizes the control offsets,
given by

JN (µN−1) =
N−1∑
k=0

µ⊤
k Ψµk =

N−1∑
k=0

(vk −Kzk)
⊤Ψ(vk −Kzk),

where µN−1 := (µ0, . . . , µN−1) and Ψ = Ψ⊤ ≻ 0. Within our setting, if K and P are
such that (3.27) holds true with equality. Then it holds that

JN (µN−1) = VN (dN )− z⊤0 Qz0 with Ψ = R+B⊤PB.

However, JN (·) discards the cost term z⊤0 Qz0 with z0 = x from VN (·), which results in
a value function J0

N (·) that is not guaranteed to admit adequate upper bound necessary
for establishing stronger robust exponential stability properties. Consequently, [11]
only establishes robust convergence results with respect to XO albeit the authors in [35]
proved that the tube MPC proposal of [11] is robust asymptotically stable.

Initialization: Proposal [11] enforces an initial condition z0 = x. This is a disadvantage
of [11] and, in fact, the main cause of the lack of robust stability guarantees. Proposal [12]
enforces an initial condition z0 = z⋆1 , where z⋆1 is the predicted nominal state one-step
ahead of the previous time instant. Proposal [13] allows for an initial conditionx−z0 ∈ S ,
where S is an outer invariant approximation of the minimal robust positively invariant
set for s+ = AKs + w, w ∈ W . This initial condition facilitates a direct geometric
argument for robust exponential stability of the set S. In this regard, the improved
proposal in this chapter refines all proposals [11]–[13] by allowing for a relaxed initial
condition x− z0 ∈ Xf .

Tubes Stage Constraints: Proposals [12], [13] make uses of tubes with rigid cross-
sectionS , while the proposal in this chapter and [11] make uses of tubes with time-varying
cross-sections S̃k, k ∈ NN . Tubes with time–varying cross-sections are less conservative
since S̃k ⊆ S for all k ∈ NN . Thus, the utilization of time–varying cross-sections
S̃k reduces the effects of the uncertainty on the constraints. In order to modify stage
constraints, for all i ∈ nY , support function h

(
S̃k, ηi

)
needs to be evaluated offline

for all k ∈ NN−1 for tubes with time-varying cross-sections S̃k, while for all i ∈ nY ,
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each support function h (S, ηi) needs to be evaluated offline only once for rigid tubes
with constant cross-sections S. In this regard, a concrete comparison of the involved
computation cost depends on the horizon N and the specific representations of sets S̃k

and S.

Tubes Terminal Constraints: The terminal constraints in this chapter and [11] are
specified by

zN + s̄N ∈ Xf ⊖ S̃N and zN ∈ Xf ⊖ S̃N ,

respectively. Both proposals [12], [13] make use of terminal constraints zN ∈ Zf , where
Zf is the maximal positively invariant set for system z+ = (A+BKf )z and constraints
z ∈ {z : ∀s ∈ S, (z + s,Kf (z + s)) ∈ Y}. Note that in [12], [13], Kf is set to be the
same as K, but it is possible to choose a matrix K that is different from Kf , as pointed
out in [36]. When Kf = K, it is not difficult to verify that Zf ⊕S ⊆ Xf since both sets
Zf ⊕ S and Xf are robust positively invariant [36] and Xf is the maximal one. Since
for all N ∈ N, S̃N ⊆ S, it holds that

Zf ⊆ Xf ⊖ S ⊆ Xf ⊖ S̃N .

Thus, compared to [12], [13], terminal constraints used in this chapter and [11] bring
about a further reduction of the effects of the uncertainty on the constraints.

Remark 3.3 Tuning the control feedback K and the local terminal feedback Kf sepa-
rately for [12], [13] provides more flexibility, and may results in a larger feasible domain.
In [19], the authors have presented a scheme similar to [11] where K is not necessarily
equal to Kf . However, although Kf given by the solution to the unconstrained infinite
horizon linear quadratic regulator (A,B,Q,R) is optimal, a systematic way to optimally
choose matrix K, in order to enlarge the effective domain and decrease the value function
simultaneously, is still not yet available.

Some key features of these proposals are summarized in Table 3.1. The robust stability
and convergence is in terms of the minimal robust positively invariant set XO. The
effective domains of the four listed methods are compared in a relative sense. As already
pointed out, proposal [11] has been proved to be robust asymptotically stable in [35].
The explicit construction of Zf and S can be further avoided by making use of implicit
set representations at the cost of introducing some extra optimization variables, as shown
in [14]. The interested readers are refereed to [31] for a more detailed comparison
between [11] and [12].
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Table 3.1: Features of tube MPC proposals

method offline
computation

robust positive
invariance

effective
domain

robust stability
and convergence

This Chapter Xf yes large exponential stability
[11] Xf and S̃k yes large convergence
[12] Zf and S yes small asymptotic stability
[13] Zf and S yes medium exponential stability

Online Computation: The tube optimal control problems of [11]–[13] are strictly
convex quadratic programming problems. For the proposal in this chapter, PN (x)

reduces to a strictly convex quadratic programming problem with the use of the change
of variables s̄k = Ak

K(x− z0) for all k ∈ NN . In terms of these strictly convex forms
of PN (·) and if the nominal dynamics in [12], [13] were not eliminated in order to
keep the sparse structure of PN (·), the number of decision variables and constraints
are listed in Table 3.2. The notations nZf

and nS denote the number of the inequality
representations of the sets Zf and S , respectively. As shown in Table 3.2, the numbers
of decision variables and constraints scale linearly with respect to horizon length N for
all proposals, indicating that the online computations of all proposals are of the same
order of complexity. As also shown in Table 3.2, the online computations are almost
identical for all proposals, especially when N is large.

Table 3.2: Number of Decision Variables and Constraints

method # of decision variables # of affine equalities # of affine inequalities

This chapter (N + 1)n+Nm Nn 2nf +NnY

[11] Nm Nn+Nm nf +NnY

[12] Nn+Nm Nn nZf
+NnY

[13] (N + 1)n+Nm Nn nS + nZf
+NnY

3.5.2 Numerical Illustration

Example 3.1 Our first example is taken from the constrained double integrator con-
sidered in [13], with the only exception that the stage constraint set is changed to
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Y := X× U and

X := {x ∈ R2 : ∥x∥∞ ≤ 100 and [0 1]x ≤ 2} and
U := {u ∈ R : −1 ≤ u ≤ 1}.

The terminal weighting matrix P and the feedback gain matrix K are obtained as the
solutions to the infinite horizon unconstrained optimal control for (A,B,Q,R).

x1

x2

x(0)

[11]
[12]
[13]

Figure 3.1: Effective domains and closed-loop simulations

x1

x2

x(5)

Figure 3.2: The Predicted tube XN at the closed-loop time step 5.

We choose a prediction horizonN = 10 and start from an initial statex(0) = [48.5;−8.4].
In Figure 3.1, the effective domains of our method and [11] are identical, and they
include the effective domains of [12], [13]. For 1000 sampled disturbance sequences,
the closed-loop state x(k) converges to the maximal robust positively invariant set Xf in
11 steps and to the minimal robust positively invariant set XO in 12 steps. Figure 3.2
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visualizes the predicted tube X10 at sampling instant 5, and it shows that the required
tube constraints are satisfied. We start from an initial state x(0) = [48;−7] and simulate
the control processes for [12], [13] and the proposal in this chapter with 1000 times.
Figure 3.3 shows the the averaged value functions, labeled by V̄ 0

10 (·), illustrating that
our methods achieves lowest cost and faster convergences compared to [12], [13]. We
remark that the cost function JN (·) of [11] is defined on the control offsets µN−1, as
discussed in section 3.5.1. Thus, we do not include the comparison of the corresponding
results of [11] in Figure 3.3 for the sake of fairness.
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k

V̄ 0
10(x(k))

[13]
[12]

Figure 3.3: Averaged value functions V̄ 0
10 (·) along {x(k)}k∈N20

.

To highlight the benefits of using support functions, we consider the following example
in higher dimensions.

Example 3.2 Our second example is taken from [14, Section 6.2], which is a variation
of a modern transport airplane model in [37, Example AC9]. In this example, n = 10

and m = 4. The discrete time system matrices A and B are obtained via the Euler
discretization with sampling period T = 0.5 [s]. The relevant sets Y and W , and
matrices Q and R are given by, Y = 500B10∞×50B4∞,W = B102 , Q = 100I and R = I .
The terminal weighting matrix P and the feedback gain matrix K are also obtained as
the solutions to the infinite horizon unconstrained optimal control for (A,B,Q,R). The
prediction horizon is specified by N = 20.

For offline implementation in MATLAB, the maximal robust positively invariant set Xf

51



Chapter 3. Tube MPC with Time-Varying Cross-Sections

is computed in 0.55 [s], and all the relevant scalars f(k,i) and gi is computed in 0.008

[s] by using NORM function. Thus, the offline design is performed successfully in less
than 0.56 seconds. For online implementation in MATLAB with QUADPROG solver, we
start the simulation from an initial state x(0) = [8; 50; 50; 100; 7; 15; 100; 2; 100; 50]

for 20 time steps with a randomly sampled disturbances sequence. The average time to
solve each of the considered quadratic programming problems is 0.08 [s]. Figure 3.4
depicts the simulated sequence {z00(x(k))}k∈N19 and the corresponding closed-loop state
trajectory {x(k)}k∈N20 , illustrating that the proposed tube model predictive controlled
states convergence exponentially fast to the associated minimal robust positively invariant
set XO.
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-200
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z00(x(k))

k
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k

Figure 3.4: {z00(x(k))}k∈N19
and {x(k)}k∈N20

3.6 Concluding Remarks

This chapter has revisited the early tube MPC methods [11]–[13] for more general
mixed constraint set Y and disturbance set W , and presented a refined tube MPC,
which preserves all desirable computational and structural properties of its predecessors.
The refined tube MPC also improves the desirable control-theoretic properties of [11]–
[13] to a reasonable extent and simplifies the offline computations with the help of
support functions. An important direction for future research involves extending the
proposed refinement to incorporate a wider spectrum of control systems and adopting
less conservative parameterized prediction schemes.
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[34] Z. Artstein and S. V. Raković, “Feedback and invariance under uncertainty via set
iterates,” Automatica, vol. 44, no. 2, pp. 520–525, 2008.

[35] M. Zanon and S. Gros, “On the similarity between two popular tube MPC
formulations,” in European Control Conference (ECC), 2021, pp. 651–656.
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Chapter 4

Robustifying MPC of Stage-Wise
Chance Constrained Linear Systems

This Chapter is based on the following paper under review:

Kai Wang, Kiet Tuan Hoang and Sébastien Gros. Robustifying Model Predictive Control
of Uncertain Linear Systems with Chance Constraints. Accepted to IEEE Conference on
Decision and Control (CDC), 2024.

4.1 Introduction

In the last two decades, model predictive control (MPC) has emerged as one of the most
prevalent optimization-based control techniques in academia and industry [1]–[3]. The
main advantages of MPC come from its ability to simultaneously cope with constraints,
optimize performance and ensure desirable control-theoretic properties [4], [5]. However,
many of these properties deteriorate in the presence of disturbances although, nominal
(certainty-equivalent) MPC exhibits inherent robustness to some extent [6]. Nevertheless,
an MPC that explicitly considers uncertainty is required in safety-critical applications.
When the uncertainty description of the disturbance is available, robust MPC [7], [8],
stochastic MPC [9], and more recent distributionally robust MPC [10] can be employed
to maintain safety to certain acceptable levels. Whereas robust MPC considers the set-
membership description of bounded uncertainties, stochastic MPC and distributionally
robust MPC consider uncertainties which follow specific probability distributions or sets
of probability distributions, respectively.
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To alleviate the computational complexity of the exact min-max robust MPC [5], tube
MPC has been widely investigated as a sensible option for its intuitive simplicity,
computational practicality and guaranteed control-theoretic properties. Based on the two
early tube MPC methods for linear systems under bounded disturbance [11], [12] which
were proposed almost simultaneously, many subsequent studies have appeared for both
tube-based robust MPC [13]–[16] and tube-based stochastic MPC [17]–[22], as well as
tube-based distributionally robust MPC [23]–[25]. Interestingly, most tube-based robust
MPC proposals reviewed above were generated from [11], while almost all tube-base
stochastic and distributionally robust MPC proposals have adopted method [12]. The
main differences concern how the optimal control problem (OCP) is solved where the
OCP of [11] is solved based on the current state of the nominal system, while [12] solves
the OCP based on the current state of the real system. Another notable difference lies
in how they tighten the stage constraints where [11] uses (minimal) robust positively
invariant sets, while [12] uses a sequence of reachable sets. Compared to [12], recursive
feasibility and stability are easier to be obtained in [11], as argued in [26].

However, extending [11] to linear stochastic systems requires computing a probabilistic
positively invariant set [27] which is non-trivial. In this regard, [27] proposes a method to
compute polyhedral probabilistic positively invariant sets by using Chebyshev inequality,
assuming that the system matrix is diagonalisable and that the disturbance distribution
has zero-mean and diagonal covariance matrix. The paper [28] proposes to characterize
ellipsoidal probabilistic positively invariant sets, assuming that the system matrix is
invertible and that the disturbance distribution has zero-mean. In [29], the ellipsoidal
probabilistic positively invariant sets are investigated, assuming a correlation bound for
the system matrix.

In this chapter, we generalize the method of [11] to linear systems under possibly
unbounded stochastic disturbance, where stage-wise chance constraints on the state and
input are considered. The proposed MPC only requires knowledge of the mean and
covariance of the stochastic disturbance without assuming zero-mean, invertible/diagonal
system matrices or bounds on the mean and covariance of the disturbance like in [27]–[29].
To satisfy the stage-wise chance constraints through constraint tightening, a polytopic
(minimal) probabilistic positively invariant set is computed, which is minimal for a group
of polytopes that are probabilistic positively invariant. The resulting online optimization
problem is a simple, standard strictly convex quadratic programming, for which recursive
feasibility and stability properties can be easily guaranteed.

The rest of this chapter is organized as follows. Section 4.2 details the problem setup on
the systems and constraints. Section 4.3 discusses the probabilistic positively invariant
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set and its computation. Section 4.4 presents the proposed MPC algorithm. Section 4.5
demonstrates the proposed approach with a numerical case study.Section 4.6 ends this
chapter with concluding remarks.

4.1.1 Basic Nomenclature and Conventions

The sets of real numbers, non-negative integers and positive integers are denoted by R,
N and N+, respectively. Given a, b ∈ N, with a < b, we use the notation Iba to denote
the set of non-negative integers {a, a+ 1, . . . , b}. The Minkowski sum and Pontryagin
difference of nonempty sets X and Y are

X ⊕ Y := {x+ y : x ∈ X , y ∈ Y} and
X ⊖ Y := {x : ∀y ∈ Y, x+ y ∈ X} ,

respectively. The image of a nonempty setX under a matrix of compatible dimensionsM
is given by MX := {Mx : x ∈ X}. Likewise, if M is a square matrix, for any integer
k ∈ N, MkX :=

{
Mkx : x ∈ X

}
. The sets of symmetric positive semi-definite and

symmetric positive definite matrices in Rn are denoted by Sn+ and Sn++, respectively.
Ellipsoids with shape matrix M ∈ Sn+, center c ∈ Rn and radius

√
r > 0 are defined as

E(M, c, r) :={x : (x− c)⊤M−1(x− c) ≤ r}

={c+M
1
2x : x⊤x ≤ r},

where the matrix M
1
2 is such that M

1
2M

1
2 = M . In addition, it holds that E(M, c, r) =

c⊕E(M, 0, r) by definition. The support function h(X , ·) of a nonempty, closed, convex
set X ⊆ Rn is given, for all y ∈ Rn, by

h (X , y) := sup
x
{y⊤x : x ∈ X},

4.2 Problem Setup

This section introduces the considered systems and the underlying constraints and
presents the utilized state and control parameterization. This section also includes the
standing assumptions on the systems and constraints as well as the parameterization
strategy.
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4.2.1 Uncertain Linear Systems

This chapter considers uncertain linear systems of the form

∀k ∈ N, xk+1 = Axk +Buk + wk, (4.1)

where xk ∈ Rn and uk ∈ Rm denote the state and input, respectively, while wk ∈ Rn

denotes a randomly distributed disturbance. These disturbances w0, w1, . . . : Rn → Rn

are assumed identically distributed and independent of each other and xk and uk, with
common probability distribution ω, i.e.,

∀k ∈ N, wk ∼ ω.

Due to the disturbance wk, we consider stage-wise chance constraints on the state xk
and input uk, given by:

∀k ∈ N+, Pr(xk ∈ X | x0) ≥ 1− ϵx and (4.2)
∀k ∈ N, Pr(uk ∈ U) ≥ 1− ϵu, (4.3)

where ϵx, ϵu ∈ (0, 1) are modeling parameters, x0 is an initial state, and X and U denote
constraint sets on the state and input respectively. The set X (U) is a region for which
the system state xk (input uk) should be confined with a probability no lower than the
specified confidence level 1− ϵx (1− ϵu).

We make the following standing assumptions on the system dynamics (4.1) and constraints
(4.2)-(4.3)

Assumption 4.1

1. The matrix pair (A,B) ∈ Rn×n × Rn×m is known exactly, and it is strictly
stabilizable.

2. The set X ⊆ Rn is a convex polyhedron that contains the origin in its interior,
and the set U ⊆ Rm is a convex polytope that contains the origin in its interior.
In addition, their irredundant inequalities characterizations are given by:

X :=
{
x : ∀i ∈ IX , f⊤

i x ≤ 1
}
, (4.4)

U :=
{
u : ∀i ∈ IU , g⊤i u ≤ 1

}
, (4.5)

with the known finite index sets IX := {1, 2, . . . , nX }, IU := {1, 2, . . . , nU}, and
the known vectors fi ∈ Rn and gi ∈ Rn.
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3. The probability distribution ω is not known exactly, however, its mean vector
µω ∈ Rn and covariance matrix Σω ∈ Sn++ are known.

4.2.2 State and Control Parameterization

In what follows, we introduce the linear feedback law as

∀k ∈ N, uk = vk +Ksk (4.6)

and rewrite the state xk as

∀k ∈ N, xk = zk + sk. (4.7)

Here, zk ∈ Rn denotes the nominal (disturbance-free) component such that

∀k ∈ N, zk+1 = Azk +Bvk (4.8)

based on the nominal control input vk ∈ Rm. Thus, by subtracting (4.8) from (4.1) and
in view of (4.6)–(4.7), sk ∈ Rn denotes the error component satisfying

∀k ∈ N, sk+1 = (A+BK)sk + wk, with wk ∼ ω. (4.9)

The matrix K ∈ Rm×n is a priori given and constructed to satisfy the following
assumption.

Assumption 4.2 The matrix K ∈ Rm×n is given, and it is such that the matrix
AK := A+BK is strictly stable, i.e., all eigenvalues of AK are in the open unit disc.

4.3 Probabilistic Positively Invariant Set

In this section, we first characterize the confidence regions for the random vector sk.
Then, sufficient conditions for probabilistic positively invariant sets are presented, which
is analogous to characterization of the well understood robust positively invariant sets.
A method for computing the polytopic probabilistic invariant set, that is minimal with
respect to a group of pre-defined norm vectors, is presented based on linear programming.
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4.3.1 Characterization Confidence Regions

Let µk ∈ Rn and Σk ∈ Sn++ denote the mean vector and covariance matrix of the
random vector sk, whose stochasticity is caused by the random disturbance sequence
{wi}k−1

i=0 via stochastic dynamics (4.9). Then, the dynamics of µk and Σk are specified,
with µ0 = s0 and Σ0 = 0, by

∀k ∈ N, µk+1 = AKµk + µω and (4.10)
∀k ∈ N, Σk+1 = AKΣkA

⊤
K +Σω. (4.11)

Based on the multivariate Chebyshev inequality [30], [31], we have the following
proposition.

Proposition 4.1 Suppose Assumption 4.1–3 holds. Consider µk and Σk generated
by (4.10) and (4.11). It follows that

∀k ∈ N+, Pr (sk ∈ E(Σk, µk, n/ϵ) | s0) ≥ 1− ϵ, (4.12)

i.e., E(Σk, µk, n/ϵ) are confidence regions with confidence level 1− ϵ of the random
vectors sk.

Proof: It follows from [30, Theorem 1] that

∀k ∈ N+, Pr
(
(sk − µk)

⊤Σ−1
k (sk − µk) > n/ϵ | s0

)
≤ Pr

(
(sk − µk)

⊤Σ−1
k (sk − µk) ≥ n/ϵ | s0

)
≤ ϵ,

such that

∀k ∈ N+, Pr
(
(sk − µk)

⊤Σ−1
k (sk − µk) ≤ n/ϵ | s0

)
= 1− Pr

(
(sk − µk)

⊤Σ−1
k (sk − µk) > n/ϵ | s0

)
≥ 1− ϵ.

Thus, it follows from the definition of ellipsoids that

∀k ∈ N+, Pr (sk ∈ E(Σk, µk, n/ϵ) | s0) ≥ 1− ϵ.

□
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Corollary 4.1 Suppose Assumptions 4.1 and 4.2 hold. Consider µk and Σk generated
by (4.10) and (4.11). It follows that

∀k ∈ N+, E(Σk+1, µk+1, n/ϵ) ⊆ AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ). (4.13)

Proof: By the property of ellipsoids, it holds that

∀k ∈ N+, E(Σk+1, µk+1, n/ϵ) = µk+1 ⊕ E(Σk+1, 0, n/ϵ)

and

AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ)

= AKµk + µω ⊕AKE(Σk, 0, n/ϵ)⊕ E(Σω, 0, n/ϵ).

For all k ∈ N+, it follows from [29, Property 1] that

E(Σk+1, 0, n/ϵ) ⊆ AKE(Σk, 0, n/ϵ)⊕ E(Σω, µω, n/ϵ),

and it follows from (4.10) that

µk+1 = AKµk + µω.

Thus, the Minkowski sum of both sides of the above two expressions completes the
proof. □

4.3.2 Sufficient Conditions for Probabilistic Positively Invariant Sets

At this point, we introduce the setsRϵ
k defined by the following set-dynamics:

∀k ∈ N, Rϵ
k+1 = AKRϵ

k ⊕ E(Σω, µω, n/ϵ) (4.14)

with the boundary condition given byRϵ
0 = {s0}.

Proposition 4.2 Suppose Assumptions 4.1 and 4.2 hold. Consider the setsRϵ
k generated

by (4.14) and µk and Σk generated by (4.10) and (4.11). It follows that

∀k ∈ N+, E(Σk, µk, n/ϵ) ⊆ Rϵ
k, (4.15)

such that

∀k ∈ N+, Pr (sk ∈ Rϵ
k | s0) ≥ Pr (sk ∈ E(Σk, µk, n/ϵ) | s0)

≥ 1− ϵ. (4.16)
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Proof: We will show by induction that the inclusions (4.15) holds. When k = 1, we
have that

E(Σ1, µ1, n/ϵ) = Aµ0 ⊕ E(Σω, µω, n/ϵ)

Rϵ
1 = As0 ⊕ E(Σω, µω, n/ϵ)

such that E(Σ1, µ1, n/ϵ) = Rϵ
1 ⊆ Rϵ

1 since µ0 = s0. Suppose, for some k ∈ N+,
E(Σk, µk, n/ϵ) ⊆ Rϵ

k, then we have that

E(Σk+1, µk+1, n/ϵ) ⊆ AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ)

⊆ AKRϵ
k ⊕ E(Σω, µω, n/ϵ)

= Rϵ
k+1,

in which the first inclusion follows from (4.13). It follows from (4.12) and (4.15)
that (4.16) holds. □

We recall from [27] that a set S ⊆ Rn is called probabilistic positively invariant for the
system (4.9) with probability 1−ϵ, if and only if, for any s0 ∈ S ,Pr (sk ∈ S | s0) ≥ 1−ϵ
for all k ∈ N+.

Proposition 4.3 Suppose Assumptions 4.1 and 4.2 hold. Consider a set Rϵ ⊆ Rn

satisfying, for any s0 ∈ Rϵ,

AKRϵ ⊕ E(Σω, µω, n/ϵ) ⊆ Rϵ (4.17)

with ϵ ∈ (0, 1). Then,Rϵ is a probabilistic positively invariant set for the system (4.9)
with probability 1− ϵ.

Proof: Consider the setsRϵ
k generated by (4.14). As shown in (4.16), we have that

∀k ∈ N+, Pr (sk ∈ Rϵ
k | s0) ≥ 1− ϵ.

To show thatRϵ is a probabilistic positively invariant set for the stochastic system (4.9)
with probability 1 − ϵ, we just need to prove that for all s0 ∈ Rϵ it holds that
Rϵ

k ⊆ Rϵ, k ∈ N. When k = 0,

Rϵ
0 = {s0} ⊆ Rϵ
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trivially holds. Suppose, for some k ∈ N,Rϵ
k ⊆ Rϵ, then we have that

Rϵ
k+1 = AKRϵ

k ⊕ E(Σω, µω, n/ϵ)

⊆ AKRϵ ⊕ E(Σω, µω, n/ϵ)

⊆ Rϵ.

Thus, we have, for all s0 ∈ Rϵ, thatRϵ
k ⊆ Rϵ, k ∈ N, by induction. □

In the rest of this section, we make the following standing assumption

Assumption 4.3 Given ϵ ∈ (0, 1), the set E(Σω, µω, n/ϵ) contains the origin in its
interior.

Note that Assumption 4.3 implies that the support functions of E(Σω, µω, n/ϵ) is
positive, i.e., for all y ∈ Rn, h (E(Σω, µω, n/ϵ), y) > 0. We will discuss the methods
for computing a probabilistic positively invariant setRϵ based on the sufficient condition
given by (4.17).

4.3.3 Computation of Probabilistic Positively Invariant Sets

Given ϵ ∈ (0, 1) satisfying Assumption 4.3, we recall that a set Rϵ ⊆ Rn is robust
positively invariant for the uncertain dynamics ∀k ∈ N, sk+1 = AKsk + wk with
wk ∈ E(Σω, µω, n/ϵ) if and only if

AKRϵ ⊕ E(Σω, µω, n/ϵ) ⊆ Rϵ, (4.18)

and it is the minimal robust positively invariant set if and only if

AKRϵ ⊕ E(Σω, µω, n/ϵ) = Rϵ. (4.19)

Thus, condition (4.17) is equivalent to the sufficient and necessary condition for
characterizing robust positively invariant sets for the system ∀k ∈ N, sk+1 = AKsk+wk

with wk ∈ E(Σω, µω, n/ϵ). Moreover, the minimal robust positively invariant set given
by (4.19) is desirable since it will be used to tighten the constraint set in the next section.

However, computing an exact representation of the minimal robust positively invariant
set is generally impossible. In practice, outer invariant approximations of the minimal
robust positively invariant set are computed [32]. In our setting, since E(Σω, µω, n/ϵ) is
an ellipsoid rather than a polytope, the method [32] is not applicable. Instead, we make
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use of the method [33], which is generated from the method originally proposed in [16].
The method of [33] computes a polytopic robust positively invariant set that is minimal
with respect to the group of robust positively invariant sets generated from a finite number
of inequalities with pre-defined normal vectors. In the sequel, we briefly summarize the
method of [33]. Consider a setRϵ(q) given, with IP = {1, ..., r}, r ∈ N+, by

Rϵ(q) = {x ∈ Rn : ∀i ∈ IP , p⊤i x ≤ qi}, (4.20)

where {pi : ∀i ∈ IP} spans Rn, ∀i ∈ IP , qi ≥ 0 and q = (q1, . . . , qr)
⊤. Then, the

polytopic, minimal robust positively invariant set generated from the pre-defined normal
vectors {pi : ∀i ∈ IP} is given by

Rϵ(q∗) = {x ∈ Rn : ∀i ∈ IP , p⊤i x ≤ q∗i }. (4.21)

Here, q∗ = d∗ + c∗, where d∗ := (d∗1, ..., d
∗
r)

⊤ is given by

∀i ∈ IP , d∗i = h (E(Σω, µω, n/ϵ), pi)

= µ⊤
ω pi +

√
n(p⊤i Σωpi)

ϵ
, (4.22)

and c∗ := (c∗1, . . . , c
∗
r)

⊤ is given by the solution to the following linear programming
problem:

max
c, ξ

r∑
i=0

ci

s.t.

{
∀i ∈ IP , ci ≤ p⊤i AKξi

∀i ∈ IP , ∀j ∈ IP , p⊤j ξi ≤ ci + d∗i

(4.23)

with c := (c1, . . . , cr)
⊤ and ξ := {ξi ∈ Rn}ri=1. Note that in [33], c∗ and d∗ are

computed all together in one optimization problem, but d∗ could be also pre-computed
as commented in Remark 4 of [33]. Therefore, in view of Proposition 4.3, Rϵ(q∗) is
also a probabilistic positively invariant set for the system (4.9) with probability no less
than 1− ϵ.

4.4 Robustifying MPC In Probabilistic Ways

This section presents the main formulation of the robustifying MPC controller and
analyzes the control-theoretic properties of the resulting MPC controlled system.
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4.4.1 Robustifying MPC Formulation

Within our setting, given N ∈ N+, for any nominal state zk ∈ Rn at the sampling time
k ∈ N, the proposed MPC solves an OCP of the form:

V 0
N (zk) = min

zk,vk

N−1∑
t=0

ℓ(zt|k, vt|k) + Vf (zN |k)

s.t.


∀t ∈ IN−1

0 , zt+1|k = Azt|k +Bvt|k,

∀t ∈ IN−1
1 , zt|k ∈ Z,

∀t ∈ IN−1
0 , vt|k ∈ V,

zN |k ∈ Zf , z0|k = zk,

(4.24)

with zk := (z⊤0|k, ..., z
⊤
N |k)

⊤ and vk := (v⊤0|k, ..., v
⊤
N−1|k)

⊤. The subscript t|k denotes
the predictions of the nominal state and control t-steps ahead of the sampling time k.
The stage and terminal costs are given by

ℓ(z, v) = z⊤Qz + v⊤Rv and Vf (z) = z⊤Pz , (4.25)

for all z ∈ Rn and all v ∈ Rm, with P,Q ∈ Sn++ and R ∈ Sm++. The stage constraint
sets on the nominal state and input are given by

Z := X ⊖Rϵx(q∗) and V := U ⊖KRϵu(q∗). (4.26)

Assumption 4.4 The nominal state constraint set Z is a nonempty convex polyhedron
that contains the origin in its interior, and the nominal input constraint set V is a
nonempty convex polytope that contains the origin in its interior.

This assumption implies that Rϵx(q∗) ⊆ interior(X ) and KRϵu(q∗) ⊆ interior(U),
i.e.,

∀i ∈ IX , h (Rϵx(q∗), fi) < 1 and

∀i ∈ IU , h
(
Rϵu(q∗),K⊤gi

)
< 1.

The sets Z and V can be efficiently computed by using support functions given by

Z :=
{
z : ∀i ∈ IX , f⊤

i z ≤ 1− h (Rϵx(q∗), fi)
}
,

V :=
{
v : ∀i ∈ IU , g⊤i v ≤ 1− h

(
Rϵu(q∗),K⊤gi

)}
.

The nominal terminal constraint set Zf and cost Vf satisfy the following natural
conditions [5].
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Assumption 4.5

1. Let Kf ∈ Rn×m be such that AKf
:= A+BKf is strictly stabilizable. The set

Zf is a convex polyhedron, and it is the maximal positively invariant set for the
system z+ = AKf

z with constraints z ∈ Z and Kfz ∈ V , i.e., it is the maximal
set such that

AKf
Zf ⊆ Zf , Zf ⊆ Z and KfZf ⊆ V. (4.27)

2. It holds that, for all z ∈ Zf ,

Vf ((A+BKf )z) + ℓ(z,Kfz) ≤ Vf (z). (4.28)

We define the feasible set for N ∈ N+ by

XN := {zk ∈ Rn : zk is such that (4.24) is feasible} .

In our setting, the optimization problem (4.24) is a convex quadratic programming
problem, feasible for all zk ∈ XN . We denote the parametric solution map of (4.24)
by z0k(zk) and v0

k(zk). Finally, we denote the MPC feedback law on the nominal
system (4.8) and the real system (4.1) by

κ̄N (zk) = v00|k(z0) and

κN (xk) = κ̄N (zk) +K(xk − zk),

respectively, such that the closed-loop controlled systems are given by

∀k ∈ N, zk+1 = Azk +Bκ̄N (zk) and (4.29)
∀k ∈ N, xk+1 = Axk +BκN (xk) + wk, wk ∼ ω. (4.30)

4.4.2 Control-Theoretic Properties

The proposed MPC scheme is briefly summarized in the Algorithm 1. By construction,
we have that zk ∈ Z for all k ∈ N+, vk ∈ V for all k ∈ N, and the sets Rϵx(q∗)

and Rϵu(q∗) are probabilistic positively invariant sets with probabilities 1 − ϵx and
1 − ϵx, respectively. Thus, the condition x0 − z0 ∈ Rϵx(q∗) and the state and input
decomposition (4.6)–(4.7) ensure that chances constraints (4.2) and (4.3) are satisfied.
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Algorithm 1 Robustifing model predictive control of chance constrained linear systems
Initialization: Given an initial system state x0, selecting an initial nominal state z0 such
that x0 − z0 ∈ Rϵx(q∗).
for all k = 0→∞, do

1. Solve the OCP (4.24) to obtain z0k(zk) and v0
k(zk).

2. Apply the κ̄N (zk) and κN (xk) to (4.29) an (4.30), respectively.

3. Measure the real state xk+1 and nominal state zk+1 from (4.29) an (4.30),
respectively.

4. Set k ← k + 1, and go to Step 1.

Theorem 4.1 Suppose Assumptions 4.1–4.5 hold. Denote ρ∞ as the stationary process
of the system ∀k ∈ N, sk+1 = AKsk + wk, with wk ∼ ω. For all z0 ∈ XN , the
MPC optimization problem (4.24) is recursively feasible. The MPC controlled nominal
system (4.29) is asymptotically stable to the origin. The real state xk of the MPC
controlled system (4.30) converges to the stationary process ρ∞ as k →∞.

Proof: The recursive feasibility of (4.24) is guaranteed by the invariant property of
the terminal set Zf enforced in Assumption 4.5–i, as shown in [4], [5]. Similarly,
Assumption 4.5–ii together with the invariance property ofZf guarantee a strict decrease
of the value function V 0

N (·) along the closed-loop nominal state trajectory [4], [5],
which guarantees that the nominal MPC controller κ̄N (·) is asymptotically stabilizing
for (4.29). Because AK is strictly stabilizable, sk converges to a stationary process ρ∞
as k → ∞. Since xk = zk + sk and uk = vk + Ksk, it follows from, zk → 0 and
vk → 0 as k →∞, that xk converges to ρ∞. □

4.5 Numerical Illustration

We consider a DC-DC converter model that has previously been adopted in [19], [20],
and it is of the form

∀k ∈ N, xk+1 =

[
1 0.075

−1.43 0.996

]
xk +

[
4.798

0.115

]
uk + wk,
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where the mean vector and covariance matrix of the stochastic disturbance wk ∼ ω are
given by

µω =

[
0.005

0.005

]
and Σω = 10−4 ×

[
1 0

0 1

]
. (4.31)

The state and input constraint sets are given by

X :=
{
x ∈ R2

∣∣ −2 ≤ [1 0]x ≤ 2, −3 ≤ [0 1]x ≤ 3
}

U := {u ∈ R | −0.4 ≤ u ≤ 0.4} .

The weighting matrices for the stage and terminal costs are given by

Q =

[
1 0

0 10

]
, R = 1 and P =

[
1.9074 −5.0562
−5.0562 39.5448

]
.

For the sake of simplicity, the control feedback and local terminal feedback matrices are
specified by

K = Kf = [−0.2858 0.4910],

such that the matrices AK and AKf
are strictly stabilizable. Note that K and Kf are not

required to be the same. The terminal weighting matrix P and the feedback matrix Kf

are obtained as the solutions to the infinite horizon unconstrained optimal control for
(A,B,Q,R). The modeling parameters in stage-wise chance constraints (4.2)-(4.3) are
specified by

ϵx = ϵu = 0.2.

To compute a polytopic probabilistic positively invariant set given by (4.21), we define
the normal vectors pi ∈ R2 as

∀i ∈ {1, ..., r}, pi =
[
sin

(
2π(i−1)

r

)
cos

(
2π(i−1)

r

)]⊤
,

with r = 66. Then, q∗ = c∗ + d∗ is computed from the solutions to (4.22) and (4.23).

We choose a prediction horizon N = 10 and start the control process from an initial state
x0 = [2.6 3.2]⊤. For convenience, we set z0 = x0. Figure 4.1 visualizes the closed-loop
real state trajectories and nominal trajectories with some disturbance sequences {wk}25k=0

sampled from the multivariate normal distribution whose mean and covariance are given
in (4.31). By simulating the closed-loop system with 104 different realizations of the
disturbance sequence {wk}25k=0, we observe that the average state constraint violation in
the first nine steps is 2%, while the input constraints were not violated. These results
are rather conservative than the pre-defined violating probabilities ϵx = ϵu = 0.2. This
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0 1 2 3

0

1

2

3

x1

x2
x0

Figure 4.1: The closed-loop real state trajectories of (4.30) with 8 sampled disturbance sequences
(coloured lines) and the closed-loop nominal state trajectories of (4.29) (red dots). The dashed
and solid lines denote partial borders of Z and X , respectively.

discrepancy is due to the fact that the computed probabilistic positively invariant sets
are conservative since only mean and covariance information are used in computing
the confidence regions. Figure 4.2 shows the nominal state trajectory of zk given
by (4.29) and the nominal input trajectory of κ̄N (zk), illustrating that the controlled
nominal system asymptotically convergences to the origin. Consequently, the real state
xk of (4.30) converges to the stationary process, and the setRϵ

x(q
∗) is confidence region

with probability 1− ϵx of this stationary process.

4.6 Concluding Remarks

This chapter has introduced a model predictive controller that provides sufficient ro-
bustness to reject possibly unbounded stochastic disturbances with stage-wise chance
constraints on the system state and input being guaranteed. The online computation
reduces to a simple standard quadratic quadratic programming problem. Compared to
conventional MPC algorithms, the proposed method only needs minor offline compu-
tational efforts to compute a probabilistic positively invariant set, which can be easily
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Figure 4.2: The closed-loop nominal state zk (upper part) and the closed-loop nominal input
κ̄N (zk) (lower part).

computed by solving a simple linear programming problem. Future work will focus on
mitigating conservativeness and extending the utilized certainty-equivalent cost function
to expected ones.
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Chapter 5

Stochastic Linear MPC with Sound
Control-Theoretic Properties

This Chapter is based on the following paper under review:

Kai Wang, Oliver K. Hasler and Sébastien Gros. Stochastic MPC with Robust Positive 
Invariance and Exponential Stability Guarantees. Submitted to IEEE Transactions on 
Automatic Control, 2024.
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Chapter 6

Mission-Wide Chance-Constrained
Optimal Control via DP

This Chapter is based on the following paper:

Kai Wang and Sébastien Gros. Solving Mission-Wide Chance-Constrained Optimal
Control Using Dynamic Programming. In Proceedings of the 61st IEEE Conference on
Decision and Control (CDC), 2022.

6.1 Introduction

In real-world control applications uncertainties, plant-model mismatch and exogenous
disturbances are unavoidable. Some finite-horizon Markov control problems require
that a risk criterion must be met over the entire planning horizon. Such a requirement
could arise due to certain regulations, such as the safety-stock placement in supply chain
management and the collision-avoidance in robot path planning. Performing optimal
control of such system under hard (robust) constraints can yield very conservative control
policies or even be infeasible. Another commonly used approach is to add a penalty term
to the objective function. However, it is hard to decided how strict the penalty should be
set; high penalties may result in conservative solutions, while low penalties may result
in high risk. It is therefore common to rather handle the risk using chance (probabilistic)
constraints directly.

In the literature of optimal control, there are many forms of chance constraint. For
example, in path planning for vehicles in the presence of obstacles, the mission is
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supposed to plan an optimal trajectory for a vehicle within N time stages. Suppose
that there exist m constraints for the vehicle at each state and time stage. Individual
chance constraint restricts the probability that the state violates a single constraint at a
single time stage. Stage-wise chance constraint restricts the probability that the state
violates any individual constraints at a single time stage, which consists of m individual
chance constraints. Both of them in effect restrict at every time stage the probability
that the vehicle collides with an obstacle. Mission-wide chance constraint restricts the
probability that the state sequence/trajectory spanning over all time steps violates any
constraints among the total mN constraints. In contrast to individual or stage-wise ones,
a mission-wide chance constraint directly restricts the probability of collision on the
overall driving mission. A mission-wide chance constraint is arguably more meaningful
than stage-wise constraints in some specific control tasks. Indeed, the former directly
handles the risk of running a mission [1]–[3], while the latter does it very indirectly
since satisfying a risk level in each time step may result in a poor risk level over the
entire horizon, see Section II-A of [4] for detailed explanations. However, individual or
stage-wise chance constraints are easier to handle than mission-wide constraints. Indeed,
the mission-wide chance constraints involve probabilities over entire state trajectory,
yielding very large probability spaces.

Notice that there is another widely used terminology, joint chance constraint, referring
to the stage-wise constraint in e.g. [5], as well as the mission-wide constraint in e.g. [1],
and even the conjunction of the stage-wise constraints within only the prediction horizon
that is typically shorter than the mission duration in some stochastic Model Predictive
Control (MPC) literature, e.g., [6]. In this chapter we do not adopt this terminology to
reduce the risk of confusion.

Optimization subject to the chance constraints was first proposed in the seminal work [7].
Chance-constrained optimization problems are typically intractable. Two main reasons
behind this intractability are (i) the difficulty of checking the feasibility of a solution
as it requires evaluating multivariate integrals, and (ii) the non-convex feasible region
defined by a chance constraint.

The current research on Chance-Constrained Optimal Control Problems (CC-OCP)
is centered around tractable approximation approaches, such as Convex bounding
approaches [2], [6], [8] and sampling approaches [9], [10]. The closed-loop controller,
stochastic MPC, has been widely used in practice to implement the CC-OCP and has
been intensively investigated among the MPC community, see [11], [12] and references
therein. It approximates the optimal control policy sequence and executes its control
action online. To the best of our knowledge, however, there does not exist any stochastic
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MPC schemes that explicitly guarantee a rigorous satisfaction of the mission-wide
chance constraint. [4] provides a tentative stochastic MPC solution that ensures recursive
feasibility in a specific sense, while the mission-wide chance constraint satisfaction is
conserved.

Stochastic Dynamic Programming (DP) is a general framework for model-based se-
quential decision-making processes under uncertainty and provides a global optimal
control policy sequence. Chance-constrained DP was first introduced in [13] with
application in operation of reservoir, and was extended in [14] by introducing additional
system variables. In [13], [14], however, these approaches are heuristic and the chance
constraints are limited to the form of cumulative stage-wise chance constraints. [15]
provided a systematic way to cope with the formulation proposed in [13] within the
framework of Lagrangian duality theory, and also pointed out that there is no clear way to
incorporate the mission-wide chance constraint because of the lose of additive structure
in the constraints. This is due to the fact that there exists time-correlation between the
stage-wise chance constraints such that the mission-wide chance constraint cannot be
simply expressed as the summation of stage-wise chance constraints. The authors in [16]
proposed a DP method for MWCC-OCP, by first reformulating the mission-wide chance
constraint via Boole’s approximation, and then solving the resulting unconstrained
Lagrangian function. This method was applied to the robotic space exploration mission
in [3]. When the optimization criteria is absent, in [17], a tailored DP approach was pro-
posed to maximize the mission-wide probability of safety. Unfortunately, MWCC-OCP
cannot necessarily be put in that simple form.

The above statement does not exclude the existence of a DP solution to the MWCC-OCP,
but it indicates that classical DP framework cannot be simply applied. This chapter
entails in theory that there does exist an exact DP solution to the MWCC-OCP through
proper state augmentation. This comes at the cost of the augmented state being in a
functional space, hence making the resulting DP problem significantly more challenging
to tackle.

The rest of this chapter is structured as follows. In Section 6.2 we formulate the
MWCC-OCP and provide some preliminaries. Section 6.3 is devoted to develop a DP
algorithm for the general risk-constrained dynamic optimization problem. In Section 6.4
we detail a specific DP algorithm to the MWCC-OCP through state augmentation. An
one-dimensional lineal case study is given in Section 6.5. Finally, Section 6.6 concludes
the chapter.
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6.2 Problem Setup and Preliminaries

Consider a discrete-time Markov Decision Process (MDP) with continuous state and
action space. More specifically, we assume the state space S ⊆ Rns and control/action
space A ⊆ Rna . The transition density function

ρ[ s+ | s, a ] : S × S ×A → [0,∞), (6.1)

provides a conditional probability of observing a transition from the state-action pair
s ∈ S, a ∈ A to a successor state s+ ∈ S. In the control community, the system
dynamics are often alternatively defined as where f : S × A ×W → S is possibly a
vector-valued nonlinear function and the disturbance w is the realization of a random
variable that takes values from setW ⊆ Rnw . We will assume that the finite stage cost is
given by ℓ(s, a) : S ×A → R, and that deterministic, Markovian policies are functions
πk(sk) : S → A, which specify an action ak = πk(sk) when the system visits state sk
at time step k.

Let a nonzero N ∈ N denote the mission duration. To accomplish a mission, a decision
maker or controller has to make actions/decisions that minimize the following cost

E

[
N−1∑
k=0

ℓ(sk, ak) + ℓN (sN )

∣∣∣∣∣ s0, ak = πk(sk)

]
. (6.2)

Here, E is the expected value operator applying to the space of all possible trajectories
s0,...,N of the states in closed-loop with policy sequence π := {π0, . . . , πN−1} and a
fixed initial state s0 ∈ S. Function ℓN is a finite terminal cost incurred at the end of the
mission. We set πk := {πk, . . . , πN−1} for any k = 1, . . . , N − 1.

We consider a mission to be safe if the closed-loop trajectory of state lies in a constraint
set S ⊆ S, i.e., s1,...,N ∈ S. However, in many practical cases, satisfying this safety
requirement may be impossible especially when the disturbances of the system are
unbounded. Even in the case where the system states are finitely supported, it can still
be infeasible, and yield very conservative policies. Alternatively, we seek to guarantee
a probabilistic safety on the state sequence spanning over the whole mission, i.e., a
mission-wide chance constraint (MWCC):

P [ s1,...,N ∈ S | s0, π] ≥ 1− ε , (6.3)

where P[·] denotes the probability operator, and ε ∈ [0, 1] is a predefined risk bound
indicating that the probability that the states stay within a safe set over the mission
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duration or planning horizon is at least 1− ε. We call the left hand term of (6.3), i.e.,
P [ s1,...,N ∈ S | s0, π] , Mission-Wide Probability of Safety (MWPS).

The resulting MWCC-OCP can be formally formulated as

J∗(s0) = min
π

E

[
N−1∑
k=0

ℓ(sk, ak) + ℓN (sN )

∣∣∣∣∣ s0, π
]

(6.4a)

s.t. P [ s1,...,N ∈ S | s0, π] ≥ 1− ε , (6.4b)

for each feasible initial state s0 ∈ S. Here we assume that s0 lies in the set from which
there exists police sequence π such that (6.4b) is feasible, even through such set is not
easy to be calculated [18]. We will call J∗ the optimal cost function that assigns the
optimal cost J∗(s0) to each feasible initial state s0.

To solve problem (6.4), apart from the approximation methods mentioned in Section
6.1, one would naturally think of DP because it is arguably the most general approach
to sequential decision-making problem when a model is at hand. Even when it is
computationally expensive, DP may still serve as the basis for many practical approaches.
Since the above mission-wide chance constraint are acting on the whole Markov Chain
s1,...,N , existing methods for constrained DP [19] and constrained MDPs [20] cannot
be used. This is due to the fact that these methods require that the state constraints are
expressed in additive or independent form. As we will show in this chapter, problem
(6.4) presents interesting features.

In the following sections, we integrate the constraint of problem (6.4) into its objective
function via a penalty function, and then investigate conditions under which a DP scheme
can be deployed.

6.3 MWPS-Constrained Problem with DP

Let 1S : S → {0, 1} denote the indicator function of set S ⊆ S; 1S(s) = 1, if s ∈ S,
and 0 if s /∈ S. Let us define the set of functions V πk

k : S→ [0, 1], ∀k = 0, 1 . . . , N − 1

as follows:

V πN

N (s) = VN (s) = 1S(s) ,

V πk

k (s) = P
[
sk+1,...,N ∈ S

∣∣∣ sk = s, πk
]
.

In this way, given a state s0, the associated MWPS can be denoted by V π
0 (s0) =

V π0

0 (s0) = P [ s1,...,N ∈ S | s0, π] .
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Lemma 6.1 Function V πk

k can be computed by the backward recursion:

V πk

k (sk) =

∫
S
V πk+1

k+1 (sk+1) · ρ[sk+1 | sk, πk(sk)] dsk+1

:= Esk+1

[
V πk+1

k+1 (sk+1)
∣∣∣sk, πk(sk)] (6.5)

initialized with the boundary condition VN (sN ) = 1S(sN ), where operation Esk+1

indicates that the expectation is taken with respect to the probability distribution of sk+1

that remains in set S.

Proof: See [21, Lemma 1] □

As what is typically done in constrained MDPs, penalizing the risk of mission failures
with a suitably chosen cost function can in principle guarantee that the MDPs yield a
policy which tends to not violate the constraints or even not violate the constraints at all
when exact penalty is used.

Let us consider an optimization problem of the form:

J̃∗(s0) = min
π

E

[
N−1∑
k=0

ℓ(sk, ak) + ℓN (sN )

∣∣∣∣∣ s0, π
]
+ ζ (V π

0 (s0)) , (6.6)

where ζ : [0, 1]→ [−∞,+∞] is a penalty function mapping the MWPS into a scalar
that possibly takes values in the extended real line.

Assumption 6.1 The function ζ commutes with the expectation operator Esk+1
for all

k = 0, 1, . . . , N − 1, i.e.,

ζ
(
V πk

k (sk)
)
= ζ

(
Esk+1

[
V πk+1

k+1 (sk+1)
∣∣∣sk, πk(sk)])

=Esk+1

[
ζ
(
V πk+1

k+1 (sk+1)
)∣∣∣sk, πk(sk)] (6.7)

Remark 6.1 It is obvious to verify that Assumption 6.1 holds if function ζ is affine and
may only apply for this case. The commutation property in this assumption is essentially
what we need to derive the following proposition.

116



6.3. MWPS-Constrained Problem with DP

Proposition 6.1 Let Assumption 6.1 be satisfied. Then (6.6) can be solved via the
following DP recursion on the state-space:

J̃N (sN ) = ℓN (sN ) + ζ (VN (sN )) ,

J̃k(sk) = min
ak∈A

ℓ(sk, ak) +

∫
S
J̃k+1(sk+1)ρ[sk+1|sk, ak]dsk+1, k = N − 1, . . . , 0.

(6.8)

For every initial state s0, the optimal cost J̃∗(s0) of problem (6.6) is equal to J̃0(s0),
given by the last step (backward in time) of the above recursion. Furthermore, if
π∗
k(sk) = a∗k minimizes the right hand side of (6.8) for each sk and k, then the policy

π∗ = {π∗
0, . . . , π

∗
N−1} is optimal for problem (6.6).

Proof: For k = N − 1, N − 2, . . . , 0, let J̃∗
k (sk) be the optimal cost for the (N − k)-

stage problem associated to (6.6) that starts at state sk and time k, and ends at time
N ,

J̃∗
k (sk) = min

πk
E

[
N−1∑
i=k

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk, πk

]
+ ζ

(
V πk

k (sk)
)
.

For k = N , we define J̃∗
N (sN ) = ℓN (sN ) + ζ (VN (sN )) . We will show by induction

that the functions J̃∗
k are equal to the functions J̃k generated by the DP recursion (6.8),

such that for k = 0 the desired result will be obtained.

By definition, we have J̃∗
N = J̃N = ℓN +ζ. Assume that for some k+1 and all sk+1, we

have J̃∗
k+1(sk+1) = J̃k+1(sk+1). Then, since πk = (πk, π

k+1), we have for all sk ∈ S,
(these developments are further explained hereafter)

J̃∗
k (sk) = min

πk
E

[
N−1∑
i=k

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk, πk

]
+ ζ

(
V πk

k (sk)
)

= min
πk

ℓ(sk, πk(sk)) + Esk+1

[
min
πk+1

E

[
N−1∑
i=k+1

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk+1, π
k+1

]]
+ min

πk+1
ζ
(
Esk+1

[
V πk+1

k+1 (sk+1)
∣∣∣sk, πk(sk)]) .

Based on equality (6.7) in Assumption 6.1, by commuting Esk+1
and ζ, we can further
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observe that the above equation is equal to

J̃∗
k (sk) = min

πk

ℓ(sk, πk(sk))

+ Esk+1

[
min
πk+1

E

[
N−1∑
i=k+1

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk+1, π
k+1

]]
+ min

πk+1
Esk+1

[
ζ
(
V πk+1

k+1 (sk+1)
)∣∣∣sk, πk(sk)]

Furthermore, we observe that

J̃∗
k (sk) = min

πk

ℓ(sk, πk(sk))

+ Esk+1

[
min
πk+1

E

[
N−1∑
i=k+1

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk+1, π
k+1

]]

+ Esk+1

[
min
πk+1

ζ
(
V πk+1

k+1 (sk+1)
)∣∣∣∣sk, πk(sk)]

= min
πk

ℓ(sk, πk(sk)) + Esk+1

[
min
πk+1

E

[
N−1∑
i=k+1

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk+1, π
k+1

]
+ζ

(
V πk+1

k+1 (sk+1)
) ∣∣∣ sk, πk(sk)] .

In the first equation above we moved the second minπk+1 inside the brackets expression
Esk+1

[ · ]. In the last equation above, we integrated the two expressions of Esk+1
[ · ] into

one. Finally, by using the definition of J̃∗
k+1(sk+1), we can further have

J̃∗
k (sk) = min

πk

ℓ(sk, πk(sk)) + Esk+1

[
J̃∗
k+1(sk+1)

∣∣∣sk, πk(sk)]
= min

πk

ℓ(sk, πk(sk)) + Esk+1

[
J̃k+1(sk+1)

∣∣∣sk, πk(sk)]
= min

ak∈A
ℓ(sk, ak) +

∫
S
J̃k+1(sk)ρ [sk+1 | sk, ak] dsk+1

= J̃k(sk) .

In the second equation, we used the induction hypothesis. In the third equation, we
converted the minimization over πk to a minimization over ak, using the fact that for any
function κ of s and a, we have

min
µ∈Π

κ(s, µ(s)) = min
a∈A

κ(s, a)

where Π is the set of all functions µ(s) such that µ(s) ∈ A for all s. □

118



6.3. MWPS-Constrained Problem with DP

Remark 6.2 If ζ is an affine function of the form ζ(x) = λx+∆, ∀x ∈ [0, 1], where
λ,∆ ∈ R are constants, it is easy to verify that this class of functions satisfy equality
(6.7) in Assumption 6.1. Indeed, we observe that

ζ
(
V πk

k (sk)
)
= ζ

(
Esk+1

[
V πk+1

k+1 (sk+1)
∣∣∣sk, πk(sk)])

=λEsk+1

[
V πk+1

k+1 (sk+1)
∣∣∣sk, πk(sk)]+∆

=Esk+1

[
λV πk+1

k+1 (sk+1) + ∆
∣∣∣sk, πk(sk)]

=Esk+1

[
ζ
(
V πk+1

k+1 (sk+1)
)∣∣∣sk, πk(sk)] ,

so that Proposition 6.1 holds; that is, the DP algorithm (6.8) can be deployed to find an
optimal solution for problem (6.6).

Remark 6.3 In the literature on stochastic reachability analysis, see e.g.[21], if the first
term

E

[
N−1∑
k=0

ℓ(sk, ak) + ℓN (sN )

∣∣∣∣∣ s0, π
]

in the cost functions of (6.6) is absent, a DP approach is proposed in [21] to minimize
the risk only, that is,

min
π

ζ (V π
0 (s0)) := 1− V π

0 (s0) ,

which is a special case of problem (6.6). Here, the parameters of ζ are given by λ = −1
and ∆ = 1. Moreover, any cost with a linear function on the probability of mission
success as shown in Remark 6.2 falls in the category of problem (6.6).

To further make problem (6.6) equivalent to the original problem (6.4), that is, J̃∗(s0) =

J̃(s0) for all feasible s0, we need to specify a concrete function ζ.

Proposition 6.2 Suppose that function ζ is of the form:

ζ (x) =

{
0, if x ≥ 1− ε

∞, otherwise .
(6.9)

We observe that problem (6.4) and problem (6.6) are equivalent.
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Proof: This proof is straightforward. Suppose that there is a set of policy sequences
such that the MWCC (6.3) is satisfied. An optimal solution to problem (6.6) must fall
in this set, because any policy sequence outside this set will yield an infinite penalty
and hence cannot be optimal. Moreover, all the polices in this set result in zero penalty.
Thus, the proof is concluded. □

However, Assumption 6.1 is not satisfied by function ζ defined in (6.9) because in this
case ζ does not commute with the expectation operator Esk+1

[ · ]. This means that in the
case of function ζ given by (6.9), Proposition 6.1 is no longer applicable.

Note that the above observation implies that problem (6.6) with ζ defined in (6.9), which
is equivalent to the original problem (6.4), needs to be further reformulated into the
basic problem format where DP algorithm can be deployed. This will be the subject of
the following section.

6.4 Functional State Augmentation

The observations of the previous section show that adding penalty function associated to
the MWPS into the objective function is of limited use if that penalty is to be nonlinear.
Indeed, DP solutions only exist for the cases where the is an affine function of the MWPS.
For example, if the exact penalty function (6.9) is required, the DP scheme presented in
Proposition 6.1 fails to apply.

These observations, however, do not exclude the existence of a solution to problem
(6.4) via DP, but they exclude the existence of classical cost-to-go functions expressed
in terms of the state sk alone. We now discuss how one can in principle deal with
situations where Assumption 6.1 is violated and strict MWCC requirement should be
satisfied. A solution via DP arguably requires one to augment the state space to enlarge
the information at time k involved in the decision-making.

To that end, let us define the sequence of functions Fk : S → [0,∞), for k = 0, 1 . . . , N

as follows:

F0(s) = 1S(s) ,

Fk(s) = P [ s1,...,k−1 ∈ S ∧ sk = s | s0, π ] ,

This sequence has the forward linear dynamics:

Fk+1(s) =

∫
S
Fk(s

′)ρ
[
sk+1 = s | sk = s′, ak

]
ds′. (6.10)
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Given a state s0, the associated MWPS then reads as∫
S
FN (s)ds = P [ s1,...,N ∈ S | s0, π] .

At this point, by integrating the MWCC into the cost function and using Proposition 6.2,
we can then reformulate the MWCC-OCP problem (6.4) into its equivalent form

J∗(s0) = min
π

E

[
N−1∑
k=0

ℓ(sk, ak) + ℓN (sN )

∣∣∣∣∣ s0, π
]
+ ζ

(∫
S
FN (s)ds

)
, (6.11)

where the function ζ is given by e.g. (6.9).

It is useful to observe that sk is a vector in Rns stochastically decided by sk and ak
through (6.1), while Fk is a functional in some functional space deterministically decided
by given F0 and policy π0, . . . , πk−1 through (6.10). Let us denote the augmented state
as δk = (sk, Fk) , consisting of a vector state and a functional state. The dynamics of
state sk and Fk are given by (6.1) and (6.10), respectively. Naturally, the control ak
should now depend on the new state δk, or equivalently, a policy sequence should consist
of policies πk based on the regular state sk, as well as the functional state Fk.

By using the new augmented state, (6.11) is identical to the basic problem format
of finite-horizon optimal control problem, but includes a terminal constraint on the
additional state FN . Consequently, we can retain a DP solution to (6.11) without the
need of Assumption 6.1, at the expense of a significantly more complex state-space to
manipulate. The following Proposition details that DP solution.

Proposition 6.3 . For every feasible initial state s0, the optimal cost J∗(s0) of problem
(6.11) is equal to J0(δ0), given by the last step of the following backward-iteration
algorithm:

JN (δN ) = ℓN (sN ) + ζ

(∫
S
FN (s)ds

)
,

Jk(δk) = min
ak

ℓ(sk, ak) +

∫
S
Jk+1(δk+1)ρ[sk+1|sk, ak]dsk+1, k = N − 1, . . . , 0.

(6.12)

Furthermore, if π∗
k(δk) = a∗k minimizes the right hand side of (6.12) for each δk =

(sk, Fk) and k, then the policy π∗ = {π∗
0, . . . , π

∗
N−1} is optimal for problem (6.11).
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Proof: For k = N − 1, N − 2, . . . , 0, let J∗
k (δk) be the optimal cost for the (N − k)-

stage problem that starts at state δk = (sk, Fk) and time k, and ends at time N , that
is,

J∗
k (δk) = min

πk
E

[
N−1∑
i=k

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk, πk

]

For k = N , we define J∗
N (δN ) = ℓN (sN )+ζ

(∫
S FN (s)ds

)
. We will show by induction

that the functions J∗
k are equal to the functions Jk generated by the DP algorithm (6.12),

such that at k = 0 the desired result will be obtained.

By definition, we have J∗
N = JN = ℓN + ζ. Assume that for some k + 1 and all δk+1,

we have J∗
k+1(δk+1) = Jk+1(δk+1). Then, since πk = (πk, π

k+1), we have for all δk

J∗
k (δk) = min

πk
E

[
N−1∑
i=k

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk, πk

]

= min
πk

ℓ(sk, πk(δk)) + Esk+1

[
min
πk+1

E

[
N−1∑
i=k+1

ℓ(si, ai) + ℓN (sN )

∣∣∣∣∣ sk+1, π
k+1

]]

Finally, by using the definition of J∗
k+1(δk+1), we can further have

J∗
k (δk) = min

πk

ℓ(sk, πk(δk)) + Esk+1

[
J∗
k+1(δk+1)

]
= min

πk

ℓ(sk, πk(δk)) + Esk+1
[Jk+1(δk+1)]

= min
ak∈A

ℓ(sk, ak) +

∫
S
Jk+1(δk+1)ρ [sk+1 | sk, ak] dsk+1

= Jk(δk) ,

The explanations to the equations above are analogous to the corresponding ones given
in the proof of Proposition 6.1. Moreover, since F0(s0) ≡ 1 for every feasible initial
state s0 ∈ S, we have J∗(s0) = J0(δ). □

Remark 6.4 The DP principle given by Proposition 6.3 actually holds for any penalty
function ζ , i.e., not just for the case of (6.9), which makes Proposition 6.3 more universal.
However, in order to enforce the exact MWCC, then ζ defined in (6.9) can be used.

As is typically the case, state augmentation often comes at a price of making very
complex state and/or control spaces. This state augmentation has a complex state space
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that comprise a regular Euclidean space and a functional space. Nonetheless, the exact
dynamic programming scheme proposed in Proposition 6.3, for the first time, gives the
exact global optimal solution for the MWCC-OCP. Therefore, Proposition 6.3 can serve
as a stepping-stone for possibly many approximate dynamic programming methods to
be developed in the future.

6.5 Numerical Illustration

In this section, we analytically demonstrate how to use the DP algorithm proposed in the
preceding section on a simple example. Consider the one-dimensional system of the
form

sk+1 = sk + ak + wk, k = 0, 1,

with initial state s0 = s̄ which is supposed to be feasible regarding the following
problem setup. Here, ak ∈ [−0.1, 0.1] and disturbance wk ∼ N (0, 0.0001). The safe
set S = [−1, 1]. The mission duration N = 2. The cost functions ℓ(s, a) = s2 + a2 and
ℓ2(s) = s2. The exact penalty function ζ follows from (6.9) with risk bound ε = 0.1.
We observe that the augmented functional states F1, F2, F3 are given by:

F0(s0) = 1[−1,1](s̄) = 1 ,

F1(s) = F0(s̄)ρ [s1 = s | s0 = s̄, a0 = x0 ]

=
1

0.01
√
2π

e−
(s−s̄−x0)

2

0.002

F2(s) =

∫ 1

−1
F1(s

′)ρ
[
s2 = s

∣∣ s1 = s′, a1 = x1
]
ds′

=

∫ 1

−1

1

(0.01
√
2π)2

e−
(s′−s̄−x0)

2+(s−s′−x1)
2

0.002 ds′

Note that the functions F1, F2 are functions involving parameters x0, x1 ∈ [−0.1, 0.1].

By using the augmented state δk = (sk, Fk), the DP algorithm takes the following form.
At stage 2, we initialize the value function

J2(δ2) = J2(s2, F2) = ℓN (s2) + ζ

(∫ 1

−1
F2(s)ds

)

=

s22, if ζ
(∫ 1

−1 F2(s)ds
)
≥ 0.9

∞, otherwise .
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for all possible state δ2, At stage 1, we solve the following optimization problem for all
possible δ1

J1(δ1) = J1(s1, F1)

= min
a1∈[−0.1,0.1]

ℓ(s1, a1) + Es2 [J2(δ2) | s1, a1]

= min
a1∈[−0.1,0.1]

s21 + a21 +

∫ 1

−1

1

0.01
√
2π

e−
(s2−s1−a1)

2

0.002 · J2(δ2)ds2 ,

for all possible state δ1. The optimal control policy π1 is given by solving the above
optimization problem.

At stage 0, for the fixed initial state s0 = s̄, the optimal control input π0(s0) is given by
solving the following optimization problem

J∗(s0) = J0(δ0) = J0(s̄, F0)

= min
a0∈[−0.1,0.1]

ℓ(s0, a0) + Es1 [J1(δ1) | s0 = s̄, a0]

= min
a0∈[−0.1,0.1]

a20 +

∫ 1

−1
J1(δ1)

1

0.01
√
2π

e−
(s1−s̄−a0)

2

0.002 ds1

This “toy” example illustrates the essential procedures of using Proposition 6.3. A
practical implementation on a more complete example is beyond the scope of this chapter
and is being investigated in our current work.

6.6 Concluding Remarks

In this chapter, we investigate solutions for mission-wide chance-constrained optimal
control problems via Dynamic Programming. We show that classic Dynamic Pro-
gramming recursions on the state-space of the problem are possible if the penalty
imposed on mission-wide chance constraints violations commutes with the expected
value operator underlying the stochastic dynamics. We show that this requirement is
not fulfilled when imposing hard mission-wide chance constraints. We then present a
state augmentation that tackles the problem. The resulting augmented space consists of
a regular Euclidean space and a functional space. The proposed dynamic programming
scheme for the mission-wide chance-constrained optimal control problems can hopefully
play a fundamental role for developing approximation methods, because it characterizes
the optimal solutions.
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Chapter 7

Stochastic MPC with Mission-Wide
Chance Constraints

This Chapter is based on the following paper:

Kai Wang and Sébastien Gros. Recursive Feasibility of Stochastic Model Predictive
Control with Mission-Wide Probabilistic Constraints. In Proceedings of the 60th IEEE
Conference on Decision and Control (CDC), 2021.

7.1 Introduction

Model predictive control (MPC) has been well established for dealing with complex
constrained optimal control problems [1], [2]. In the context of MPC, the system
dynamics are required to be known and deterministic. In practice, the system uncertainty,
including imprecise model parameters and process noises, is generally unavoidable.
Because MPC does not take the uncertainty into account, constraints violations can
occur.

For applications where safety is critical, robust MPC strategies have been proposed
to explicitly account for uncertainty. However, robust MPC can only handle bounded
disturbances and the resulting control strategy can be conservative. To overcome these
limitations, stochastic MPC methods have been developed to seek a trade-off between
control performance and the risk of constraint violations using chance constraints.

There are mainly three forms of chance constraints proposed in the literature: individual
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chance constraint, stage-wise chance constraint [3] and mission-wide chance constraint
[4]. E.g. in path planning for vehicles in the presence of obstacles, individual or
stage-wise constraints restrict at every time instant the probability that the vehicle
collides with an obstacle. In contrast, a mission-wide chance constraint directly restricts
the probability of collision on the overall driving mission. A mission-wide chance
constraint is arguably more meaningful than stage-wise constraints. Indeed, the former
directly handles the risk of running a mission [4], [5], while the latter does it very
indirectly. However, stage-wise chance constraints are easier to handle than mission-wide
constraints. Indeed, the latter handles probabilities over entire state trajectories, yielding
very large probability spaces. More forms of chance constraints are discussed in, e.g.,
[3, Section 2.2] and references therein.

The current research on stochastic MPC focuses on developing efficient methods for
solving the underlying optimization problem, while recursive feasibility is less explored.
Indeed, because of the (possibly unbounded) stochasticity, the recursive feasibility of
stochastic MPC typically holds in the probabilistic sense, making its analysis much
more involved. Some results exist in specific contexts. When the system uncertainties
have bounded supports, recursive feasibility can be guaranteed using robust MPC
[6], at the cost of yielding very conservative control policies. For linear stochastic
systems with unbounded support, if the first two moments of the disturbance distribution
are known, constraint-tightening methods via the Chebyshev–Cantelli inequality are
presented in [7]–[9]. Recursive feasibility is guaranteed using backup strategies when
an infeasible optimization problem is encountered [7], [8], and using time-varying risk
bound [9]. The author in [10], [11] proposed stochastic MPC algorithms that have a
certain probability of remaining feasible if the initial condition is feasible. However,
none of these methods tackle mission-wide probability of safety (MWPS), nor can
provide a meaningful certificate of MWPS. In [12], the problem of maximizing the
MWPS is expressed as a stochastic invariance problem and further developed into an
optimal control problem, which is solvable via dynamic programming. Unfortunately,
problems constraining the MWPS rather than maximizing it cannot necessarily be put in
that simple form.

Guaranteeing recursive feasibility of a stochastic MPC problem with MWPS constraints
is an open problem, and this chapter investigates a tentative solution. The main
contributions of this chapter is threefold. First, we show that if a policy is designed
to achieve a certain MWPS, then the MWPS remaining until the end of the mission
remains constant in the expected value sense. Second, we design a recursively feasible
control scheme using shrinking horizon policies in the context of stochastic MPC with
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MWPS guarantee. The proposed scheme treats directly the probability of running a
mission successfully and therefore does not introduce artificial conservativeness. Third,
an efficient scenario-based algorithm is proposed to deploy the idea in the linear case.

The rest of this chapter is structured as follows. In Section 7.2 we present the problem
statement of stochastic MPC with MWPS constraints, and its difference from the classical
stochastic MPC with stage-wise probabilistic constraint. Section 7.3 details how the
MWPS remains constant throughout the mission, and a recursively feasible policy design
is discussed in Section 7.4. We demonstrate the idea in the linear stochastic MPC case
based on an efficient scenario-based algorithm in Section 7.5. Section 7.6 provides a
numerical case study to illustrate the proposed method. Finally, Section 7.7 concludes
the chapter points to some future work.

Notations: The notation P[ · | · ] denotes a conditional probability. The notation EB[ · ]
indicates expectation conditional on event B. We use s0,...,N ∈ S to denote that a
state sequence s0,...,N lies in a constraint set S of the state space, i.e., sk ∈ S for all
k = 0, . . . , N . We denote I[a,b] the set of integers in the interval [a, b] ⊆ R.

7.2 Problem Statement

7.2.1 MWPS Constrained Optimal Control

We consider a mission spanning a predefined horizon N ∈ N to be “safe” if:

s1,...,N ∈ S (7.1)

starting from some initial states s0 ∈ S. Here, sk ∈ Rn is the state at time step k, and
S ⊂ Rn is a set in the state space. We assume that the true stochastic system dynamics
are given by:

ρ[ s+ | s, a ] (7.2)

providing the probability density underlying transitions from a state-input pair s, a to
a new state s+. Throughout the chapter, we assume that the states are known and
continuous. Notice that the control community typically uses:

s+ = f(s, a, w) (7.3)

to describe stochastic dynamics, in which w denotes the stochastic disturbances and f is
generally a nonlinear function. The input a is given by a control policy sequence

∀k ∈ I[0,N−1], π := {π0, . . . , πN−1}
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such that
∀k ∈ I[0,N−1] ak = πk(sk).

In general, guaranteeing the absolute safety as described in (7.1) yields very conservative
control policies, or is even infeasible if the uncertainty is unbounded. Alternatively,
for a given initial condition s0 ∈ S and a policy sequence π, we are interested in the
Mission-Wide Probability of Safety (MWPS):

P[s1,...,N ∈ S | s0, π]. (7.4)

The problem we are interested in is then to find a policy sequence solution of

min
π

E

[
M(sN ) +

N−1∑
k=0

L(sk, πk(sk))

]
(7.5a)

s.t. P[s1,...,N ∈ S | s0, π] ≥ S , (7.5b)

where S ∈ [0, 1] is a predefined safety bound, the functions L and M are some given
stage and terminal costs, and (7.5a) is the expectation over the state trajectories resulting
from s0, π and (7.2).

In practice, calculating an optimal policy sequence for problem (7.5) exactly is hardly
possible, because it involves optimization over an infinite dimensional function space. To
tackle this issue, we will be interested in using stochastic MPC formulations to generate
policies that enforce the MWPS (7.4), where a control input ak is computed by solving
an optimal control problem at every time step. In that context, a key concept will be the
remaining MWPS at any time k ∈ I[1,N−1] for a given state sk, defined as:

P[sk+1,...,N ∈ S | sk, π] (7.6)

Here sk is the outcome of a realization s1,...,k of the Markov Chain and its relationship
to (7.4).

A key observation is that a policy sequence π satisfying (7.5b) does not yield any
guarantee on (7.6). Indeed, an adversarial realization can e.g. bring the system into a
state sk for which the remaining MWPS is lower than S.

This observation entails that in the proposed context, the notion of recursive feasibility
needs to be treated in a different way that is commonly done in robust MPC. We will
detail this in Section 7.3. We briefly detail next the motivation for developing methods
to treat MWPS constraints outside of the classical chance-constraint framework.
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7.2.2 Mission-wide Constraints & Stage-Wise Constraints

In this section, we present our motivation for treating MWPS directly rather than via
Stage-Wise Probability of Safety (SWPS). In particular, regardless of the desired MWPS
level, enforcing it via SWPS becomes very conservative for long missions. SWPS
problems seek policies that enforce constraints of the form:

P [sk ∈ S | s0, π] ≥ sk ≥ s, ∀ k ∈ I[1,N ] , (7.7)

in which 1 ≥ sk ≥ s ≥ 0. One can then easily verify that the Boolean algebra and
Booles’s inequality entail that:

P[s1,...,N ∈ S | s0, π] = 1− P

[
N⋃
k=1

sk /∈ S

∣∣∣∣∣ s0, π
]

≥ 1−
N∑
k=1

P [sk /∈ S | s0, π]

= 1−
N∑
k=1

(1− P [sk ∈ S | s0, π])

≥ 1−N +
N∑
k=1

sk ≥ 1−N +Ns .

To ensure the satisfaction of (7.5b) via imposing (7.7), requires the choice, 1−N+Ns ≥
S, i.e. a bound for s can be derived as:

s ≥ N − 1

N
+

S

N
. (7.8)

Hence enforcing MWPS (7.4) via SWPS (7.7) requires selecting s according to (7.8),
which yields a bound s close to one very fast as N increases, see Fig. 7.1, hence
turning the SWPS constraints into hard constraints. While tighter bounds than (7.8)
can be derived1, treating MWPS via SWPS without introducing conservativeness is
difficult. The intuitive reason behind this issue is that SWPS formulations neglect the
time-correlation between the constraints violations, and as a result, it offers an incorrect
representation of the risks incurred by a system over a mission. Bound (7.8) corrects
that, at the cost of introducing a high conservatism. By using a similar argument to
what we developed above, risk-allocation technology proposed in [13] optimizes the

1e.g. the Bonferroni inequalities allow one to refine the bound in (7.8) by accounting for some of the
correlation between successive states
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risk assigned to each stage-wise constraint instead of using constant risk in (7.7). This
method leads a computationally expensive two-stage optimization problem and is still
conservative as depicted in [3, Fig. 1].

Figure 7.1: Illustration of bound (7.8) for various N and S. The curved manifold displays the
bound (7.8) for the SWPS such that a prescribed MWPS (7.4) holds.

7.3 Relation between Remaining and Initial MWPS

Here, we show that the remaining MWPS is constant in the expected value sense. This
offers a novel path for guaranteeing the recursive feasibility of MPC-like control schemes
with MWPS constraints.

Lemma 7.1 If the policy sequence π satisfies (7.4), then

E{s1,...,k∈S | s0,π} [P[sk+1,...,N ∈ S | sk, π]] ≥ S (7.9)

for all k = 1, . . . , N − 1, i.e. the remaining MWPS at time k satisfies the constraint on
the prescribed MWPS (7.4) in the expected value sense.
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Proof: We observe that:

P[s1,...,N ∈ S | s0, π] =
∫
Sk
P[s1,...,k|s0, π]P[sk+1,...,N ∈ S |s0,...,k, π]ds1 . . . dsk

=

∫
Sk

P[s1,...,k | s0, π]P[sk+1,...,N ∈ S | sk, π] ds1 . . . dsk

=

∫
S
P[s1,...,k−1 ∈ S ∧ sk|s0, π]P[sk+1,...,N ∈ S |sk, π]dsk

:= E{s1,...,k∈S | s0,π} [P[sk+1,...,N ∈ S | sk, π] ] .

Here, s1,...,k is a Markov Chain underlying (7.2), and therefore a random variable in the
high dimensional space (Rn)k. Given a policy sequence π, the remaining MWPS at
time k, i.e., the term inside E{s1,...,k∈S | s0,π}[ · ], depends only on the random state sk,
which is a particular dimension in the Markov Chain s1,...,k. Hence, the last equation
holds because here E{s1,...,k∈S | s0,π}[ · ] is used to denote the expectation value of the
remaining MWPS that is taken over all possible realizations of the random Markov
Chain s1,...,k that remains in S. □

Lemma 7.1 entails that the MWPS is conserved in the expected value sense throughout
the mission if a mission-wide policy sequence has been selected at the beginning of the
mission. Result (7.9) is arguably best interpreted in a frequentist framework. Indeed,
even though a specific realization s0,...,k may be adversarial for the remaining MWPS,
we observe that in average the MWPS remains unchanged throughout the mission. As a
result, (7.9) entails that if running missions under policy π designed according to (7.5),
the resulting ratio of success will asymptotically be at least S. While this statement
may appear tautological, it provides a basic concept of recursive feasibility that can be
translated into constraints in a MPC framework to ensure that a prescribed MWPS is
achieved. We detail this observation below.

7.4 Recursive Feasibility of MWPS with Shrinking-Horizon
Policies

In this section, we focus on solving the originally proposed mission-wide probability-
constrained finite-horizon optimal control problem (7.5) using shrinking-horizon policies
that are updated as the mission progresses. The reason behind this is that the exact
optimal policies for (7.5) is difficult to compute in general.

As a result, in practice, the policy sequenceπ is typically finitely parameterized, and hence
restricted to a subset of the set of admissible policies. This introduces sub-optimality,
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and makes it useful to re-solve problem (7.5) at every time instant k, according to the
latest state realization sk. We then consider at every time k the control policy sequence:

πk =
{
πk
k , . . . , π

k
N−1

}
(7.10)

lasting to the end of the mission. For the sake of brevity, we will work with a shrinking
horizon extending to the end of the mission. The fixed, receding horizon shorter than
the mission duration will be the object of our future work.

At every time instant k ∈ I[0,N−1], for the corresponding state sk, we consider solving
the following shrinking-horizon, mission-wide and chance-constrained problem:

min
πk

E

[
M(sN ) +

N−1∑
l=k

L(sl, π
k
l (sl))

]
(7.11a)

s.t. P[sk+1,...,N ∈ S | sk, πk] ≥ Sk (7.11b)

to get a new policy sequence. Here, Sk ∈ [0, 1] is a varying risk-bound that will be
specified later. Notice that while (7.11) computes an entire policy sequence πk for the
current state sk, only the first policy πk

k of that sequence is used to generate the actual
control action, as the policy sequence is recalculated at the next time instant k + 1, in
a classic MPC fashion. The inputs eventually applied to the closed-loop system will
therefore read as:

ak = πk
k (sk) , ∀ k ∈ I[0,N−1] (7.12)

In the context of mission-wide stochastic MPC, we will consider the recursive feasibility
issue of employing the policy sequence {π0

0, . . . , π
N−1
N−1} resulting from extracting only

the first policy πk
k of the policy sequence πk at every time step k, for all k ∈ I[0,N−1]. We

show next that retaining recursive feasibility in the sense of (7.9) requires only that the
new policy sequence produces a remaining MWPS that is not worse than a discounted
one achieved by the previous policy for the current state sk. We formalise this statement
in the proposition below.

Proposition 7.1 Assume that the initial policy sequence π0 satisfies the MWPS cos-
ntraint:

P[s1,...,N ∈ S | s0, π0] ≥ S0 ≥ S (7.13)

and that each policy sequence πk is built under the constraint:

P[sk+1,...,N ∈ S | sk, πk] ≥ Sk (7.14)
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where
Sk = γkP[sk+1,...,N ∈ S | sk, πk−1]

holds and with γk ∈ (0, 1], for all k ∈ I[1,N−1]. Then the MWPS under ak = πk
k (sk)

and k ∈ I[0,N−1] reads as:

P
[
s1,...,N ∈ S

∣∣∣ s0, {π0
0, . . . , π

N−1
N−1}

]
≥

N−1∏
k=1

γkS0 . (7.15)

Proof: We will prove this by induction. Consider

P
[
s1,...,N ∈ S

∣∣∣ s0, {π0
0, . . . , π

k
k , . . . , π

k
N−1}

]
=

∫
S
P
[
s1,...,k−1 ∈ S ∧ sk | s0, {π0

0, . . . , π
k−1
k−1}

]
P
[
sk+1,...,N ∈ S

∣∣∣ sk, πk
]
dsk

≥
∫
S
P
[
s1,...,k−1 ∈ S ∧ sk | s0, {π0

0, . . . , π
k−1
k−1}

]
γkP

[
sk+1,...,N ∈ S

∣∣∣ sk, πk−1
]
dsk

=γkP
[
s1,...,N ∈ S

∣∣∣ s0, {π0
0, . . . , π

k−1
k−1, . . . , π

k−1
N−1}

]
,

where the last equality holds because the last integral describes the MWPS associated to
applying the policy sequence {π0

0, . . . , π
k−1
k−1, . . . , π

k−1
N−1}. Hence an induction from

P[s1,...,N ∈ S | s0, π0] ≥ S0

yields (7.15). □

Let us introduce the following corollaries, showing the practical implications of Proposi-
tion 7.1:

Corollary 7.1 (Guarantee of MWPS) The choice:
N−1∏
k=1

γkS0 = S (7.16)

together with the policy update constraint (7.14) yields a sequence of policies {π0
0, . . . , π

N−1
N−1}

that satisfies the prescribed MWPS constraint (7.13).

Proof: The update constraint (7.14) ensures that (7.15) holds. Condition (7.16)
imposed on the factors γ1,...,N−1 then ensures that (7.5b) is satisfied. □

Corollary 7.2 (Recursive Feasibility) Constraint (7.14) is always feasible for any γ ≤ 1.
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Proof: We observe that (7.14) is feasible for πk = πk−1. □

7.5 A Scenario-Based Stochastic MPC Approach

7.5.1 Simplified Control Policy for Stochastic MPC

In this section we deploy the mission-wide stochastic MPC idea developed so far in the
linear case. Let us consider that the stochastic dynamics (7.3) are explicitly given by:

sk+1 = Ask +Bak + wk , (7.17)

and that the safe set S is polytopic, i.e.

S = { s |Cs+ c ≤ 0} . (7.18)

Here we assume that the disturbances wk, k ∈ I[0,N−1] are i.i.d., and zero-mean for the
sake of notation convenience.

At each time instants k ∈ I[0,N−1], the predicted state st for all t = k, k+1, . . . , N , can
be split into a nominal part and an stochastic error part, i.e., st = s̄t + et. we consider
the policy sequence πk

t parameterized via āt, K, given by:

at = πk
t (st) := āt +Ket, ∀t ∈ I[k,N−1]

where K is a stabilizing feedback matrix for the nominal dynamics:

s̄t+1 = As̄t +Bāt s̄k = sk. (7.19)

The stochastic error dynamics are then given by:

et+1 = (A+BK) et + wt, ek = 0 . (7.20)

Our goal is to solve the following mission-wide probability constrained optimal control
problem at every time instant k:

min
āk,...,N−1

E

[
s⊤NQNsN +

N−1∑
t=k

(
s⊤t Qst + a⊤t Rat

)]
(7.21a)

s.t. s̄k = sk (7.21b)
s̄t+1 = As̄t +Bāt, ∀t ∈ I[k,N−1] (7.21c)
et+1 = (A+BK) et + wt, ∀t ∈ I[k,N−1] (7.21d)
st+1 = s̄t+1 + et+1, ∀t ∈ I[k,N−1] (7.21e)
P[Cst+1 + c ≤ 0, ∀t ∈ I[k,N−1]] ≥ Sk . (7.21f)
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Here, Q,QN are semi-positive definite, R is positive definite, and the value

Sk = γkP[sk+1,...,N ∈ S | sk, πk−1] (7.22)

will be estimated at every time instant k using Monte Carlo simulation based on the real,
closed-loop state sk and the previous policy sequence πk−1.

7.5.2 An Efficient Scenario-Based Stochastic MPC Algorithm

Cost Function. Since E[st] = s̄t and et is zero mean (since wt is zero mean by
assumption), the cost function (7.21a) can be written explicitly as

s̄⊤NQN s̄N +
N−1∑
t=k

(
s̄⊤t Qs̄t + ā⊤t Rāt

)
+ σ,

where σ is a constant term that can be excluded from the cost function.

Chance Constraint. Substituting (7.21d) and (7.21e) into (7.21f), the constraints can
be rewritten as

P[C(s̄t+1 + (A+BK) et + wt) + c ≤ 0, ∀t ∈ I[k,N−1]]≥Sk

and further be written as

P[CAw⊤
k,...,N−1 + [c, . . . , c]⊤︸ ︷︷ ︸

:=H

+ Cs̄⊤k+1,...,N ≤0]≥Sk (7.23)

with matrix A obtained by condensing the dynamic (7.21d) and matrix C being block-
diagonal with C as blocks.

Scenario Approximation. In general, providing a closed form for (7.23) is difficult.
Fortunately, this problem can be handled efficiently with a scenario-based approach.
Constraints (7.23) is replaced by a finite, sufficiently large number Nk of deterministic
constraints resulting from sampling the disturbance sequence wk,...,N−1. For a given
time instant k, we define the ith sample for all i ∈ I[1,Nk] as

w
(i)
k,...,N−1 := {w

(i)
k , . . . , w

(i)
N−1} ,

Hence, the chance constraint (7.23) can be converted to

H(i) + Cs̄⊤k+1,...,N ≤ 0, ∀i ∈ I[1,Nk] , (7.24)
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where
H(i) = CA(w(i)

k,...,N−1)
⊤ + [c, . . . , c]⊤ .

In order to guarantee that (7.24) approximates (7.23) with a high probability 1 − β,
where β is typically set to be very small (e.g., β = 10−6), Nk must satisfy the following
inequality [14]:

dk∑
n=1

(
Nk

n

)
(1− Sk)

nSNk−n
k ≤ β ,

where dk is the number of optimization variables. The explicit lower bound of Nk can
be further derived as [15]:

Nk ≥
2

1− Sk

(
ln

1

β
+ dk

)
. (7.25)

To further reduce the conservatism of the scenario-based approach, a sample removal
approach is proposed in [16] and several variants are proposed. Their use here is beyond
the scope of this chapter.

For each scenario i, nc linear constraints are generated in (7.24). It is clear that nc

is equal to the number of rows of matrix H(i). We additionally observe that for the
constraint of index j ∈ I[1,nc] in (7.24), the following inequality holds:

[H(i)]j + [C]j s̄k+1,...,N ≤ max
q∈I[1,Nk]

[H(q)]j + [C]j s̄k+1,...,N

for all i ∈ I[1,Nk], where [⋆]j denotes the jth row of the matrix ⋆. Note that this inequality
is tight, i.e., for all constraint of index j there always exists at least one sample of
index i that ensures the above inequality tight. Hence jth constraint is satisfied for all
realizations i if they are satisfied for the one having the largest [H(i)]j .

Let us label:
Ij = max

i∈I[1,Nk]

[H(i)]j , ∀j ∈ I[1,nc].

then we have that constraint (7.24) is equivalent to the following constraints:

Ij + [C]j s̄k+1,...,N ≤ 0, ∀j ∈ I[1,nc].

Note that calculating Ij , for all j ∈ I[1,nc], requires only nc (vector) maximum operations
that are easy to implement and computationally efficient.
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Now, (7.21) is equivalent to the following QP:

min
āk,...,N−1

s̄TNQN s̄N +

N−1∑
t=k

(
s̄Tt Qs̄t + āTt Rāt

)
(7.26a)

s.t. s̄k = sk (7.26b)
s̄t+1 = As̄t +Bāt + w̄t, ∀t ∈ I[k,N−1] (7.26c)
Ij + [C]j s̄k+1,...,N ≤ 0, ∀j ∈ I[1,nc] (7.26d)

yielding a regular QP of the same complexity as a normal linear MPC.

A systematic overview of the proposed scenario-based mission-wide linear stochastic
MPC scheme is summarized in Algorithm 2.

Algorithm 2 linear stochastic MPC with MWPS constraints
Initialization: S0, γ1,...,N−1, initial state s0

For k = 0 : N − 1, Do
1)If k ≥ 1 Evaluate Sk in (7.22) through Monte Carlo simulation
2) Generate Nk scenarios according to (7.25)
3) Get the solution ā∗k,...,N−1 by solving (7.26)
4) Send ā∗k to the actual system and update state: sk+1 = Ask +Bā∗k + wk

7.6 Numerical Illustration

We consider the linear system (7.17) with

A =

[
1 1

0 1

]
, B =

[
0.5

1

]

and the uncertainty is assumed to have a Gauss distribution

wk ∼ N (0, 0.04 · I).

The safe (constraint) set S (7.18) is given by matrices

C =


1 0

0 1

−1 0

0 −1

 , c =


−2
−2
−10
−2

 .
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The matrices Q = I , R = 0.1, and

K = [−0.6167,−1.2703] , QN =

[
2.0599 0.5916

0.5916 1.4228

]

are computed from the corresponding LQR solution.

We select N = 11, S0 = 0.98 and γ1,...,10 = 0.99, resulting in S =
∏10

k=1 γkS0 =

0.8863. The number Nk of disturbance sample is selected from (7.25). The bound
Sk given by (7.22) is evaluated from Monte Carlo simulation and β = 10−6. In the
simulations, we observed that Sk ≈ 0.99 for all k ∈ I[1,10]. This is due to Nk calculated
from (7.25) is conservative, such that the remaining MWPS at time k achieved by
the previous policy sequence {πk−1

k , . . . , πk−1
N−1}, is much higher than that is actually

required.

A Monte Carlo simulation that simulates 105 missions shows that the resulting ratio of
mission success is 99.88%. This result is larger than S = 88.63%. The reason for this
discrepancy is that the scenario-based method adopted is conservative. Figure 7.2 shows
the state trajectories of 103 missions.

(0, 0)
(−8, 0)

Figure 7.2: State trajectories plot obtained by running 103 number of missions starting from the
initial sate s0 = [−8, 0]⊤. The reference point is [0, 0]⊤. The rectangular area depicts the safe
set S.
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7.7 Concluding Remarks

We investigated optimal policies satisfying Mission-Wide Probability of Safety con-
straints, i.e. constraints imposing the safety of a system over an entire mission. This
is in contrast with classical stochastic MPC, where safety constraints are imposed
independently at every time stage. We show that recursive feasibility holds in the
expected value sense for the concept of Mission-Wide Probability of Safety, opening a
simple and practically meaningful concept of recursive feasibility for stochastic MPC.
Optimal control with mission-wide probabilistic constraints is challenging. However,
a computationally efficient scenario-based approach is proposed to solve this issue for
linear stochastic problems. For the sake of brevity, a shrinking-horizon approach was
presented in this chapter. The scenario-based approach proposed here relies on classical
Monte-Carlo sampling. More advanced methods will be developed in the future for the
proposed method.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presents a collection of contributions in the field of model-based predictive
control with a focus on the explicit consideration of uncertainty. For Chapters 3-7,
comprehensive conclusions are presented at the end of each chapter. Three primary
contributions emerge from this work.

1. We have introduced a refined tube-based robust model predictive control approach
that is simple but yet computationally efficient in Chapter 3. This method not
only revisits the three fundamental formulations but also 1) simplifies the offline
computations by employing support functions and 2) improves the desirable
control theoretic properties compared to its predecessors.

2. We have delved into stochastic model predictive control problems with stage-wise
chance constraints in Chapters 4 and 5. The method proposed in Chapter 4 is
able to reject possibly unbounded stochastic disturbances by utilizing an offline
computed probabilistic positively invariant set, while the method proposed in
Chapter 5 leads to exponentially convergence of the closed-loop system by utilizing
probabilistic reachable sets and with the use of the initialization strategy similar to
that of Chapter 3. The proposed two stochastic model predictive control methods
both maintain robust recursive feasibility and stability, with standard quadratic
programming online and simple linear programming offline.

3. We have extended the literature on stage-wise chance constraints with the in-
troduction of mission-wide chance constraints to guarantee safety in stochastic
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optimal control scenarios. To tackle these challenges, we have introduced two
approaches: dynamic programming for exact problem resolution and stochastic
model predictive control with a shrinking horizon for approximate solutions.

8.2 Future Research Directions

Certainly, there exists a wide spectrum of future research directions worthy of exploration.
Firstly, the methodologies of model-based predictive control under uncertainty presented
in this thesis hold significant potential for real-world applications. While we have only
illustrated the proposed algorithms on numerical examples for testing purposes in this
thesis, it is important to note that uncertainty is a key factor in nearly all engineering
processes. Therefore, there exist numerous intriguing applications of these methods
yet to be explored. Additionally, the methodologies introduced in this thesis also pave
the way for theoretical progress. Several significant and promising direction for further
investigation are outlined below:

• Asymptotic Stability Guarantees for Stochastic Model Predictive Control:
Despite advancements in stochastic model predictive control over the past two
decades, there remains a lack of a systematic treatment of stabilizing conditions,
particularly when considering expectation cost functions, chance constraints, and
unbounded stochastic uncertainty simultaneously. Therefore, delving into this
open yet interesting problem would be worthwhile.

• Distributionally Robust Setting: Given that it is often the case that only partial
knowledge about the uncertainty distribution is available, operating within the
distributionally robust framework is more desirable. While there is some literature
emerged more recently in this area, the computational overhead is generally
much higher compared to robust and stochastic model predictive control. The
challenge primarily stems from the complexities involved in propagating the set of
distributions. Existing techniques often facing exponentially increasing numbers
of decision variables and constraints in the underlying optimization problems.
Therefore, there is a necessity to develop more computationally efficient control
algorithms to enable their application in real-case scenarios.

• Output-Feedback Setting: The majority of model predictive control approaches
in the presence of uncertainty are designed for scenarios with full state feedback.
However, in numerous practical applications, states cannot be fully measured.
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Some robust and stochastic model predictive controllers have been developed
within the output-feedback setting, but stability and/or convergence guarantees
are often lacking, except for a few tube-based robust model predictive control
approaches. With the development of state observers and disturbance observers,
delving deeper into this problem will be promising and practically demanded.

• Adaptive (Dual), Data-Driven and Learning-Based Control: Given the pres-
ence of inevitable uncertainty, it is desirable to enhance model predictive control
with persistent input excitation or collected historical data for adapting or learning
model parameters in the face of uncertainty. Naturally, this also raises several the-
oretical challenges, such as ensuring safety certificates and analyzing closed-loop
stability properties.
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