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Tube MPC with Time-Varying Cross-Sections
Kai Wang, Sixing Zhang∗, Sébastien Gros and Saša V. Raković

Abstract— This article considers tube model predictive
control of discrete-time linear systems subject to addi-
tive bounded disturbances and mixed state and control
constraints. An improved tube model predictive controller,
leveraging the advantages and mitigating the disadvan-
tages of three pivotal existing methods, is proposed. Its
computational aspects and theoretical properties are thor-
oughly discussed and compared with its predecessors.
Two numerical examples are provided to illustrate the ben-
efits of the proposed method.

Index Terms— model predictive control; robust control;
constrained systems; tube model predictive control.

I. INTRODUCTION

Model Predictive Control (MPC) is a widely used, modern,
optimization-based control technique [1], [2]. Robust MPC is
an improved form of MPC, which explicitly models the influ-
ence of uncertainty and aims to maintain stability, performance
and constraint satisfaction [3]. The range of robust MPC
proposals includes open-loop minimax robust MPC [4], [5],
theoretically complete and computationally intensive closed-
loop robust MPC [6], [7], robust MPC based on dynamic
programming [2], [8], disturbance affine feedback MPC [9],
[10] and tube MPC [11]–[20] offering theoretically flexible
and computationally tractable methods.

As pointed out in the review articles [3], [21], tube MPC has
emerged as a leading paradigm for robust MPC due to its in-
tuitive ease, computational simplicity and guaranteed control-
theoretic properties. The robust MPC proposals [11], [12]
were reported almost simultaneously, and their formulations
can be integrated into the framework of tube MPC [15]. A
sequence of articles appeared over the last two decades, which
has defined the state-of-the-art of tube MPC. The developed
tube MPC methods include the so-called rigid tube MPC [13],
homothetic tube MPC [16], elastic tube MPC [19] and pa-
rameterized tube MPC [18] for linear systems. Tube MPC
extensions for nonlinear systems, output feedback systems
and data-driven systems, and their applications have also been
widely investigated [2], [22]. More recently, the rigid tube
MPC using implicit representations of terminal set and tube
cross-section sets was reported in [14], which enables its utility
for higher dimensional systems.
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The primary focus of this article is to refine the early and
simple, but yet computationally effective, tube MPC methods
[11]–[13] for constrained discrete-time linear systems with
additive bounded disturbances. The tube MPC proposals [11]–
[13] are effectively concerned with the same problem, and
they possess both computational simplicity and strong control-
theoretic properties. These methods are computationally ef-
ficient since they reduce to conventional MPC applied to
deterministic nominal systems subject to modified stage con-
straints, appropriate terminal constraints, and disturbance-free
stage and terminal cost functions. These methods also provide
guarantees of robust convergence/stability and robust positive
invariance. At the conceptual level, all these methods employ
rather simple tube parameterizations and affine control policies
in constructing the tube optimal control problems. On the
other hand, proposals [11]–[13] differ in terms of local uncer-
tainty propagation, nominal state initialization and modified
constraints as well as utilized cost functions. Naturally, these
differences lead to different features of these proposals, and
each proposal has its own advantages and disadvantages, as
discussed in more details in Section V-A.

Contributions: In this article, we revisit the early tube MPC
methods [11]–[13] and report a refinement of these methods.
The mixed state and control constraints are considered, which
are more general than the separate state and control constraints
specified in [11]–[13]. A novel state decomposition strategy,
that further decomposes the local uncertainty into two compo-
nents, is proposed. Based on this new decomposition strategy,
we propose a tube MPC method that improves both robust
convergence of [11] and robust asymptotic stability of [12]
to robust exponential stability, and it enlarges the effective
domains of [12], [13] to a robust positively invariant set that
is identical with the effective domain of [11] by construction.
Moreover, adapting recent ideas of [14], the support function is
employed in constraint tightening to avoid the computationally
expensive, explicit construction of tube cross-section sets. Due
to the employment of support functions, the disturbance set,
which contains the origin in its interior, need not be polytopic,
and it can be merely convex and compact.

Paper Structure: Section II presents the problem setup
and article objectives. Section III describes the constraints
on the employed tubes and specifies the set of admissible
decision variables, and it gives the utilized cost functions.
Section IV proposes the improved tube MPC and analyzes
its control-theoretic properties. Section V provides a detailed
comparison and offers two numerical illustrations, and it ends
with concluding remarks. Proofs of technical results are given
in Appendix.

Basic Nomenclature and Conventions: The sets of real
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numbers, non-negative integers and positive integers are de-
noted by R, N and N+, respectively. Given a, b ∈ N, with
a < b, we use the notation N[a:b] to denote the set of non-
negative integers {a, a + 1, . . . , b}. We denote N[0:b] by Nb.
Given p ∈ [1,∞], the p–norm of a vector x ∈ Rn is denoted by
‖x‖p, while Bnp denotes the corresponding closed unit p–norm
ball in Rn. For convenience, we denote the Euclidean norm
‖ · ‖2 by ‖ · ‖. Given a symmetric and positive definite matrix
M ∈ Rn×n and a vector x ∈ Rn, we denote x>Mx by ‖x‖2M .
The Minkowski sum of two nonempty sets X and Y in Rn is
given by X ⊕Y := {x+ y : x ∈ X , y ∈ Y}. The image of a
nonempty set X under a matrix of compatible dimensions M is
given by MX := {Mx : x ∈ X}. Likewise, if M is a square
matrix, for any integer k ∈ N, MkX :=

{
Mkx : x ∈ X

}
.

A proper D–set in Rn is a closed convex subset of Rn that
contains the origin in its interior. A proper C–set in Rn is
a bounded proper D–set in Rn. The intersection of finitely
many closed half–spaces is a polyhedral set. A polytopic set
is a bounded polyhedral set. The support function h(X , ·) of a
nonempty, closed, convex set X ⊆ Rn is given, for all y ∈ Rn,
by

h (X , y) := sup
x
{y>x : x ∈ X}.

Finally, we do not distinguish row vectors from column vectors
unless necessary, as no confusion should arise.

II. PRELIMINARIES

A. System and Constraints

We consider discrete-time linear, time-invariant, uncertain
systems given by

x+ = Ax+Bu+ w, (2.1)

where x ∈ Rn, u ∈ Rm and w ∈ Rn are, respectively, the
current state, control and disturbance, and x+ ∈ Rn denotes
the successor state. The matrix pair (A,B) ∈ Rn×n × Rn×m

is a priori given. At any current time, the state x is known,
while the disturbance w is unknown but obeys the constraint

w ∈ W. (2.2)

Throughout this article, we consider mixed polyhedral state
and control constraints

(x, u) ∈ Y with

Y :=
{

(x, u) : ∀i ∈ IY , c>i x+ d>i u ≤ 1
}
. (2.3)

We make the following standing assumptions on the sys-
tem (2.1) and constraints (2.2)–(2.3).

Assumption 1:
• The matrix pair (A,B) ∈ Rn×n × Rn×m is known, and

it is strictly stabilizable.
• The disturbance constraint set W ⊆ Rn is a proper
C–set, and its support function h (W, ·) is point-wise
computable.

• The index set IY := {1, 2, . . . , nY}, with nY ∈ N+, is
finite, and for all i ∈ IY , (ci, di) ∈ Rn+m are known. The
set Y is a polyhedral proper D–set, and its representation
is irreducible.

B. State Decomposition

In this article, the parameterized state and control pre-
dictions and an affine control policy are employed. For a
state x ∈ Rn, a control policy ΠN−1 (·) is a sequence of
affine control laws {πk (·, ·, ·, ·)}k∈NN−1

, each term of which
is parameterized via points xk ∈ Rn, zk ∈ Rn and vk ∈ Rm

and an a priori specified control matrix K ∈ Rm×n as follows

∀k ∈ NN−1, πk(xk, zk, vk, x) := vk +K(xk − zk), (2.4)

so that

∀k ∈ NN−1, xk+1 = Axk+B(vk+K(xk−zk))+wk, (2.5)

starting from x0 = x.
Assumption 2: The matrix K ∈ Rm×n is known, and it is

such that the matrix AK := A+BK is strictly stable.
The sequences {zk}k∈NN

and {vk}k∈NN−1
satisfy the fol-

lowing nominal dynamics

∀k ∈ NN−1, zk+1 = Azk +Bvk. (2.6)

The predicted states are decomposed into three components

∀k ∈ NN , xk = zk + s̄k + s̃k. (2.7)

The nominal component zk follows from the nominal con-
trolled dynamics (2.6), and the local uncertain components s̄k
and s̃k are specified by the following two dynamics

∀k ∈ NN−1, s̄k+1 = AK s̄k with s̄0 = x− z0, and (2.8)
∀k ∈ NN−1, s̃k+1 = AK s̃k + wk with s̃0 = 0. (2.9)

The initial local uncertainty s̄0 represents the deviation of the
current state x from the initial nominal state z0. Note that
the component s̄k evolves through the deterministic dynam-
ics (2.8) starting from s̄0, while the component s̃k evolves
through the uncertain dynamics (2.9) starting from the origin.
A moment of reflection reveals that dynamics (2.5) is the
superposition of dynamics (2.6), (2.8) and (2.9).

C. Tube Parameterization

The effect of the uncertainty s̃k is accounted for by em-
ploying the set-dynamics

∀k ∈ NN−1, S̃k+1 = AK S̃k ⊕W with S̃0 = {0}, (2.10)

induced by the local uncertainty dynamics (2.9) and the
disturbance set W . It follows from (2.10) that

∀k ∈ N[1,N ], S̃k =

k−1⊕
i=0

Ai
KW and S̃0 = {0}. (2.11)

The state tube is a sequence of sets, denoted by XN :=
{Xk}k∈NN

, in which each set Xk ⊆ Rn is parameterized via
zk ∈ Rn, s̄k ∈ Rn and the set S̃k ⊆ Rn as follows

∀k ∈ NN , Xk := zk + s̄k ⊕ S̃k. (2.12)

For all k ∈ NN , zk + s̄k and S̃k are, respectively, the centers
and cross-sections of the tube XN .
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D. Article Objectives

As discussed in the review article [23], exploring the dif-
ferences of the competing methods, such as [11] and [12], is
necessary for properly assessing as well as advancing existing
approaches to robust and stochastic MPC. In this article,
we aim to introduce an improved tube MPC that combines
best principal components of [11], [12], and the rigid tube
MPC [13]. The improved tube MPC deploys the prediction
tubes XN with time-varying tube cross-section sets S̃k, k ∈
NN , and it makes use of the nominal state initialization
strategy analogously to [13] and the tube terminal constraints
compatibly with [11] as well as the cost function considered
in [12], [13].

III. TUBE CONSTRAINTS, DECISION VARIABLES AND
COST FUNCTION

A. Initialization

This article adopts the initialization strategy as follows

s̄0 = x− z0 and s̄0 ∈ Xf . (3.1)

Assumption 3: The set Xf ⊆ Rn is the maximal robust
positively invariant set for the system x+ = AKx + w, and
constraints (x,Kx) ∈ Y and w ∈ W .

The maximal robust positively invariant set Xf is the limit
of the following standard set iteration [24]

∀j ∈ N, Xj+1 := {x : AKx⊕W ⊆ Xj}
⋂
X0 with

X0 := {x : (x,Kx) ∈ Y},

i.e., Xf := X∞. It is known that the maximal robust positively
invariant set [24] is nonempty if and only if the minimal robust
positively invariant set XO for x+ = AKx+ w with w ∈ W ,
specified by

XO :=

∞⊕
j=0

Aj
KW, (3.2)

is a subset of X0. The polyhedral structure of the limit set X∞,
however, is not necessarily guaranteed when the limit is not
finitely determined. It is also well known that the set X∞ is
finitely determined when one of the iterates Xj is bounded and
XO ⊆ interior(X0) [24]. More generally, the maximal robust
positively invariant set is finitely determined when Xj ⊆ Xj+1

for some j ∈ N, in which case X∞ = Xj is finitely determined
and it is nonempty when, in addition, XO ⊆ X0.

Throughout this article, we assume that Xf is finitely
determined and nonempty (thus, Xf is at least a polyhedral
proper D–set in Rn) and XO is strictly admissible with
respect to the stage constraints (i.e., that, for all x ∈ XO,
we have (x,Kx) ∈ interior(Y)). These natural conditions are
summarized by the following assumption.

Assumption 4:
• The set Xf ⊆ Rn is a polyhedral proper D–set, and

its irreducible representation is given, for known vectors
ri ∈ Rn, i ∈ IXf

:= {1, 2, . . . , nf} with nf ∈ N+, by

Xf := {x : ∀i ∈ IXf
, r>i x ≤ 1}. (3.3)

• The set XO is such that XO ⊆ interior(X0), or, equiva-
lently its support function satisfies

∀i ∈ IY , h
(
XO, ci +K>di

)
< 1. (3.4)

B. Stage Constraints
Based on the sets Xk in (2.12) and the affine control laws

πk (·, ·, ·, ·) in (2.4), the tube stage constraints take the form

∀k ∈ NN−1, (zk, s̄k, vk) ∈ Gk with

Gk :=
{

(z, s̄, v) : ∀s̃ ∈ S̃k, (z + s̄+ s̃, v +Ks̄+Ks̃) ∈ Y
}
.

(3.5)

To handle these constraints in a computationally practicable
manner, we make use of the support functions of sets S̃k given
in (2.11), which allow us to avoid the explicit implementation
of the underlying set-algebraic operations. By applying [14,
Proposition 1], the structural properties of sets Gk, k ∈ NN−1
can be summarized by the following proposition.

Proposition 1: Suppose Assumptions 1, 2 and 4 hold. For
all k ∈ NN−1, the stage constraint sets Gk are polyhedral
proper D–sets in R2n+m with (possibly redundant) represen-
tations

Gk :=
{

(z, s̄, v) : ∀i ∈ IY , c>i z + η>i s̄+ d>i v ≤ 1− f(k,i)
}
,

where, for all i ∈ IY , with ηi := ci + K>di, the scalars
f(k,i) ∈ [0, 1) are specified by

f(k,i) := h
(
S̃k, ηi

)
=

k−1∑
j=0

h
(
W, (Aj

K)>ηi

)
. (3.6)

C. Terminal Constraints
The tube terminal constraint takes the form

(zN , s̄N ) ∈ Hf with

Hf :=
{

(z, s̄) : ∀s̃ ∈ S̃N , z + s̄+ s̃ ∈ Xf

}
. (3.7)

Analogously to the construction of sets Gk in Proposition 1,
the structural properties of the set Hf can be summarized as
per the following.

Proposition 2: Suppose Assumptions 1–4 hold. The set
Hf is a polyhedral proper D–set in R2n, with a (possibly
redundant) representation

Hf := {(z, s̄) : ∀i ∈ IXf
, r>i z + r>i s̄ ≤ 1− gi},

where, for all i ∈ IXf
, the scalars gi ∈ [0, 1) are specified by

gi := h
(
S̃N , ri

)
=

N−1∑
j=0

h
(
W, (Aj

K)>ri

)
. (3.8)

In the following remark, we discuss the computational
aspects of the relevant scalars f(k,i) and gi.

Remark 1: As shown in (3.6) and (3.8), the evaluation of
the underlying scalars f(k,i) and gi requires merely the evalu-
ation of a number of support functions of W . Moreover, these
scalars can be computed by the following simple iterations
given, with f(0,i) = 0 and g(0,i) = 0, by

∀k ∈ NN−2, ∀i ∈ IY , f(k+1,i) = f(k,i) + h
(
W, (Ak

K)>ηi
)
,

∀j ∈ NN−1, ∀i ∈ IXf
, g(j+1,i) = g(j,i) + h

(
W, (Aj

K)>ri

)
,
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in which we set gi := g(N,i). The evaluation of support
functions of frequently encountered convex and compact sets
can be found in the beginning of [25, Appendix]. A more
detailed discussion of the evaluation of support functions can
be found, for instance, in [26, Section 13].

D. Set of Admissible Decision Variables

Within our setting, for a state x ∈ Rn, the variables
zN := (z0, . . . , zN ), s̄N := (s̄0, . . . , s̄N ) and vN−1 :=
(v0, . . . , vN−1) determine entirely the state tubes XN and the
related control policy ΠN−1 (·). However, in light of (2.8),
each s̄k can be expressed as follows

∀k ∈ NN , s̄k = Ak
K(x− z0). (3.9)

Thus, for a state x ∈ Rn, the actual underlying decision
variable is

dN := (zN ,vN−1) ∈ RndN (3.10)

with ndN
= N(n + m) + n. The decision variable dN is

required to satisfy dynamical consistency constraints (2.6),
tube initialization constraints (3.1), tube stage constraints (3.5)
and tube terminal constraints (3.7), which are summarized as
follows

∀k ∈ NN−1, zk+1 = Azk +Bvk, (3.11a)

∀i ∈ IXf
, r>i (x− z0) ≤ 1, (3.11b)

∀k ∈ NN−1, ∀i ∈ IY ,
c>i zk + d>i vk + η>i A

k
K(x− z0) ≤ 1− f(k,i) and (3.11c)

∀i ∈ IXf
, r>i zN + r>i A

N
K(x− z0) ≤ 1− gi. (3.11d)

For a state x ∈ Rn, the set of admissible decision variables
DN (x) is given by

DN (x) := {dN : relations (3.11) hold}. (3.12)

E. Cost

The utilized overall cost VN (·) : RndN → R≥0 associated
with the tube XN is specified, for all dN ∈ RndN , by

VN (dN ) :=

N−1∑
k=0

(
z>k Qzk + v>k Rvk

)
+ z>NPzN . (3.13)

Assumption 5: The matrices Q ∈ Rn×n, R ∈ Rm×m and
P ∈ Rn×n are all known, symmetric and positive definite, i.e.,
Q = Q> � 0, R = R> � 0 and P = P> � 0, and satisfy
the following Lyapunov inequality

A>KPAK � P −
(
Q+K>RK

)
. (3.14)

Within the considered setting, there exist scalars β1 ∈
(0,∞) and β3 ∈ (0,∞) such that, for all dN ∈ RndN , the
overall cost VN (dN ) satisfies

β1‖z0‖2 ≤ z>0 Qz0, β1‖z0‖2 ≤ β1‖dN‖2 and

β1‖dN‖2 ≤ VN (dN ) ≤ β3‖dN‖2. (3.15)

IV. IMPROVED TUBE MODEL PREDICTIVE CONTROL

A. Tube Optimal Control
For a current state x ∈ Rn, the tube optimal control

problem, labeled by PN (x), reduces to selection of dN ∈
DN (x) that minimizes VN (dN ) so that, for all x ∈ Rn,

V 0
N (x) := min

dN

{VN (dN ) : dN ∈ DN (x)} and (4.1)

d0
N (x) := arg min

dN

{VN (dN ) : dN ∈ DN (x)}. (4.2)

Here, dN is defined in (3.10), VN (dN ) is defined in (3.13),
and DN (x) is specified by (3.12). The effective domain CN of
the value function V 0

N (·) and its optimizer d0
N (·), also known

as the N–step controllable set, is

CN := {x : DN (x) 6= ∅}. (4.3)

In this setting, the cost function dN 7→ VN (dN ) is a strictly
convex and quadratic function. The set of admissible decision
variables DN (x), for each x ∈ CN , is a nonempty, closed
polyhedral subset of RndN . Thus, for any given x ∈ Rn,
PN (x) is a strictly convex quadratic programming problem,
which is feasible for all x ∈ CN . The key properties of the
value function V 0

N (·), its optimizer d0
N (·), and their effective

domain CN can be summarized by the following.
Theorem 1: Suppose Assumptions 1–5 hold, and take any

N ∈ N.
• The value function V 0

N (·) is continuous, convex, piece-
wise quadratic and such that:

∀x ∈ Xf , V
0
N (x) = 0, and (4.4)

∀x ∈ CN \ Xf , 0 < V 0
N (x) <∞. (4.5)

• The optimizer d0
N (·) is continuous, piecewise affine and

such that:

∀x ∈ Xf ,
∥∥d0

N (x)
∥∥ = 0 and (4.6)

∀x ∈ CN \ Xf ,
∥∥d0

N (x)
∥∥ > 0 and ‖z00(x)‖ > 0. (4.7)

• The effective domain CN ⊆ Rn is a polyhedral proper
D–set and satisfies

Xf = C0 ⊆ . . . ⊆ CN ⊆ Yx, (4.8)

where Yx is the (x, u) 7→ x projection of the set Y .

B. Tube MPC
The tube model predictive control evaluates implicitly the

control law κN (·), specified by

∀x ∈ CN , κN (x) := v00(x) +K
(
x− z00(x)

)
, (4.9)

and it induces the tube model predictive controlled uncertain
dynamics

∀x ∈ CN , x+ ∈ Ax+BκN (x)⊕W. (4.10)

In view of (4.6) in Theorem 1, for any x ∈ Xf , z00(x) = 0
and v00(x) = 0. Thus, for all states x in the terminal constraint
set Xf , the tube model predictive control law κN (·) and its
controlled uncertain dynamics (4.10) satisfy

∀x ∈ Xf , κN (x) = Kx and x+ ∈ AKx⊕W. (4.11)
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C. Robust Positive Invariance and Stability
In our setting, Theorem 2 establishes the robust positive

invariance property of the effective domain CN (also known
as the robust recursive feasibility of PN (·)).

Theorem 2: Suppose Assumptions 1–5 hold, and take any
N ∈ N. The effective domain CN is a robust positively
invariant set for the dynamics (4.10) and the implicitly induced
constraints (x, κN (x)) ∈ Y .

In our setting, the lower and upper bounds of the overall
cost VN (·) in (3.15) and Theorem 1 yield the following.

Proposition 3: Suppose Assumptions 1–5 hold, and take
any N ∈ N. There exist two scalars β1 ∈ (0,∞) and
β2 ∈ (0,∞) such that, for all x ∈ CN ,

β1‖z00(x)‖2 ≤ V 0
N (x) ≤ β2‖z00(x)‖2, (4.12)

and, for all x ∈ CN and all x+ ∈ Ax+BκN (x)⊕W ,

V 0
N (x+) ≤ V 0

N (x)− β1‖z00(x)‖2. (4.13)
The main, and relatively direct, ramification of the Propo-

sition 3 and Theorems 1 and 2 is the following.
Theorem 3: Suppose Assumptions 1–5 hold, and take any

N ∈ N. The maximal robust positively invariant set Xf is
robustly exponentially stable for the dynamics (4.10) with the
domain of attraction being equal to CN .

When AK satisfies Assumption 2, it is well-known that
the minimal robust positively invariant set XO is robustly
exponentially stable for the uncertain dynamics x+ ∈ AKx⊕
W with the domain of attraction being equal to the maximal
robust positively invariant set Xf . In light of (4.11), Theorem 3
and a local application of the analysis in [27], the following
refinement of the robust exponential stability is affirmative.

Corollary 1: Suppose Assumptions 1–5 hold, and take any
N ∈ N. The set XO is robustly exponentially stable for (4.10)
with the domain of attraction being equal to CN .

V. DISCUSSION

A. Comparison
State Decomposition and Control Policy: Unlike the

proposal in this paper, which decomposes the state predic-
tions into three components, [11]–[13] decompose the state
predictions into two components xk = zk + sk for all k ∈
NN−1, with sk denoting the local uncertainty. The proposed
method and [12], [13] use the control parameterization (2.4),
whereas the control parameterization of [11] is defined as
uk = Kxk + µk for all k ∈ NN−1, where µk ∈ Rm is
a control offset. However, the latter can be recovered by a
direct algebraic change of variables as µk = vk −Kzk for all
k ∈ NN−1.

Cost Function: The proposal in this paper and [12], [13]
penalize the nominal state and control predictions, as defined
in (3.13). Proposal [11] penalizes the control offsets, given by

JN (µN−1) =

N−1∑
k=0

µ>k Ψµk =

N−1∑
k=0

(vk−Kzk)>Ψ(vk−Kzk),

where µN−1 := (µ0, . . . , µN−1) and Ψ = Ψ> � 0. Within
our setting, if K and P are such that (3.14) holds true
with equality. Then, for Ψ = R + B>PB, it holds that

JN (µN−1) = VN (dN ) − z>0 Qz0. However, JN (·) discards
the cost term z>0 Qz0 with z0 = x from VN (·), which results
in a value function J0

N (·) that is not guaranteed to admit
adequate upper bound necessary for establishing stronger
robust exponential stability properties. Consequently, [11] only
establishes robust convergence results with respect to XO
albeit the authors in [28] proved that the tube MPC proposal
of [11] is robust asymptotically stable.

Initialization: Proposal [11] enforces an initial condition
z0 = x. This is a disadvantage of [11] and, in fact, the main
cause of the lack of robust stability guarantees. Proposal [12]
enforces an initial condition z0 = z?1 , where z?1 is the predicted
nominal state one-step ahead of the previous time instant.
Proposal [13] allows for an initial condition x − z0 ∈ S,
where S is an outer invariant approximation of the minimal
robust positively invariant set for s+ = AKs + w, w ∈ W .
This initial condition facilitates a direct geometric argument
for robust exponential stability of the set S. In this regard,
the proposal in this paper refines all proposals [11]–[13] by
allowing for a relaxed initial condition x− z0 ∈ Xf .

Tubes Stage Constraints: Proposals [12], [13] make use
of tubes with rigid cross-section S, while the proposal in
this paper and [11] make use of tubes with time-varying
cross-sections S̃k for all k ∈ NN . Tubes with time-varying
cross-sections are less conservative since S̃k ⊆ S for all
k ∈ NN . Thus, the utilization of time-varying cross-sections
S̃k reduces the effects of the uncertainty on the constraints.
In order to modify stage constraints, for all i ∈ IY , the
support function h

(
S̃k, ηi

)
needs to be evaluated offline for

all k ∈ NN−1, as shown in (3.6), while for all i ∈ IY , each
support function h (S, ηi) needs to be evaluated offline only
once. In this regard, a concrete comparison of the involved
computation cost depends on the horizon N and the underlying
representations of sets S̃k and S.

Tubes Terminal Constraints: The terminal constraints in
this paper and [11] are specified by zN + s̄N ⊕ S̃N ⊆ Xf and
zN ⊕ S̃N ⊆ Xf , respectively. Both proposals [12] and [13]
make use of terminal constraints zN ∈ Zf , where Zf is the
maximal positively invariant set for system z+ = (A+BKf )z
and constraints z ∈ {z : ∀s ∈ S, (z + s,Kf (z + s)) ∈ Y}.
Note that in [12], [13], Kf is set to be the same as K, but it
is possible to choose a matrix K that is different from Kf , as
pointed out in [29]. When Kf = K, it is not difficult to verify
that Zf ⊕ S ⊆ Xf since both sets Zf ⊕ S and Xf are robust
positively invariant [29] and Xf is the maximal one. Since for
all N ∈ N, S̃N ⊆ S, it holds that Zf ⊕ S̃N ⊆ Zf ⊕ S ⊆ Xf .
Thus, compared to [12], [13], terminal constraints used in this
paper and [11] bring about a further reduction of the effects
of the uncertainty on the constraints.

Remark 2: Tuning the control feedback K and the local
terminal feedback Kf separately for [12], [13] provides more
flexibility and may result in a larger effective domain. In [20],
the authors have presented a scheme similar to [11] where K
is not necessarily equal to Kf . However, while Kf obtained
from the solution to the unconstrained infinite horizon linear
quadratic regulator (A,B,Q,R) is optimal, a systematic way
for optimally selecting matrix K to simultaneously enlarge the
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x1

x2

x(0)

[11]
[12]
[13]

x1

x2

x(5)

Fig. 1. Effective domains and closed-loop simulations. Fig. 2. The predicted tube XN at sampling instant 5.

effective domain and reduce the value function requires further
analysis, and it deserves study in its own right.

Online Computation: The tube optimal control problems
of this paper and [11]–[13] are strictly convex quadratic pro-
gramming. The number of decision variables and constraints of
these four optimization problems are listed in Table 1, in which
the state and control constraints were uniformly considered
as in (2.3) and the nominal dynamics were not eliminated
to maintain the sparse structure of the tube optimal control
problems. The notations nZf

and nS denote the number of the
inequality representations of the sets Zf and S, respectively.
As shown in Table 1, the numbers of decision variables and
constraints scale linearly with respect to horizon length N for
all proposals, indicating that the online computations of all
proposals are of the same order of complexity. As also shown
in Table 1, the online computations are almost identical for all
proposals, especially when N is large.

TABLE 1. Numbers of Decision Variables and Constraints

method decision variables affine equalities affine inequalities

This paper N(n+m) + n Nn NnY + 2nf

[11] Nm N(n+m) NnY + nf

[12] N(n+m) Nn NnY + nZf

[13] N(n+m) + n Nn NnY + nS + nZf

B. Numerical Illustrations
Example 1: Our first example is taken from the constrained

double integrator considered in [13], with the only exception
that the stage constraint set is changed to Y := X× U and

X := {x ∈ R2 : ‖x‖∞ ≤ 100 and [0, 1]x ≤ 2} and
U := {u ∈ R : −1 ≤ u ≤ 1}.

The terminal weighting matrix P and the feedback gain
matrix K are obtained as the solutions to the infinite horizon
unconstrained optimal control for (A,B,Q,R).

We choose a prediction horizon N = 10 and start from
an initial state x(0) = [48.5;−8.4]. In Fig. 1, the effective
domains of the proposed method and [11] are identical, and
they include the effective domains of [12], [13]. Starting from

x(0) with a sampled disturbance sequence, the closed-loop
state x(k) converges to the maximal robust positively invariant
set Xf in 11 steps and to the minimal robust positively
invariant set XO in 12 steps. Fig. 2 visualizes the predicted
tube X10 at sampling instant 5, and it shows that the required
tube constraints are satisfied. We start from an initial state
x(0) = [48;−7] and simulate the control processes with 1000
times for [12], [13] and the proposal in this paper. Fig. 3 shows
the averaged value functions, labeled by V̄ 0

10 (·), illustrating
that the proposed method achieves the lowest cost and faster
convergence compared to [12], [13]. We remark that the cost
function JN (·) of [11] is defined on the control offsets µN−1,
as discussed in Section V-A. Thus, we do not include the
comparison of the corresponding results of [11] in Fig. 3 for
the sake of fairness.

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8
10

3

10 12 14 16 18 20
0

10

20

[13]

[12]

V̄ 0
10(x(k))

k

Fig. 3. Averaged value functions V̄ 0
10 (·) along {x(k)}k∈N20 .

To highlight the benefits of using support functions, we
consider the following example in higher dimensions.

Example 2: Our second example is taken from [14, Section
6.2], which is a variation of a modern transport airplane model
in [30, Example AC9]. In this example, n = 10 and m = 4.
The discrete time system matrices A and B are obtained via
the Euler discretization with sampling period T = 0.5 [s]. The
relevant sets Y and W , and matrices Q and R are given by,
Y = 500B10∞ × 50B4∞, W = B102 , Q = 100I and R = I . The
terminal weighting matrix P and the feedback gain matrix
K are also obtained as the solutions to the infinite horizon
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unconstrained optimal control for (A,B,Q,R). The prediction
horizon is specified by N = 20.

For offline implementation in MATLAB, the maximal ro-
bust positively invariant set Xf is computed in 0.55 [s],
and all the relevant scalars f(k,i) and gi are computed
in 0.008 [s] by using NORM function. Thus, the offline
design is performed successfully in less than 0.56 [s].
For online implementation in MATLAB with QUADPROG
solver, we start the simulation from an initial state x(0) =
[8; 50; 50; 100; 7; 15; 100; 2; 100; 50] for 20 time steps with a
randomly sampled disturbance sequence. The average time to
solve each of the considered quadratic programming prob-
lems is 0.08 [s]. Fig. 4 depicts the nominal state sequence
{z00(x(k))}k∈N19

and the corresponding closed-loop state tra-
jectory {x(k)}k∈N20

, illustrating that the proposed tube model
predictive controlled states converge exponentially fast to the
associated minimal robust positively invariant set XO.

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

0 2 4 6 8 10 12 14 16 18 20
-200

-100

0

100

200

z00(x(k))

k

x(k)

k

Fig. 4. Sequences: {z00(x(k))}k∈N19
and {x(k)}k∈N20

.

C. Concluding Remarks

This article has revisited the early tube MPC methods [11]–
[13] and presented a refined tube MPC for more general stage,
mixed state and control constraint set Y and disturbance setW .
The refined tube MPC preserves all desirable computational
and structural properties of its predecessors, and it also im-
proves the desirable control-theoretic properties of [11]–[13]
to a reasonable extent and simplifies the offline computations
with the help of support functions. An important direction for
future research involves extending the proposed refinement to
incorporate a wider spectrum of control systems and adopting
less conservative tube parameterizations.

APPENDIX

Proof of Propositions 1 and 2. These claims can be
verified by directly applying [14, Proposition 1]. Specifically,
Proposition 1 of [14] applies by replacing the underlying
support functions therein with the support functions h

(
S̃k, ·

)
for all k ∈ NN . In regard of S̃k specified in (2.11), the
equations (3.6) and (3.8) follow from [14, Lemma 2].

Proof of Theorem 1. The related topological statements
follow from the standard properties of the solution to the
considered parametric convex quadratic programming problem

PN (x) and its construction, see [2], [13], [31] for more
details. Since x ∈ Xf , zN (x) = . . . = z0(x) = 0 and
vN−1(x) = . . . = v0(x) = 0 are feasible for PN (x). Hence
0 ≤ V 0

N (x) ≤ VN (dN (x)) = 0 with dN (x) = 0, which
ensures that (4.4) and (4.6) hold. Likewise, if x ∈ CN \Xf , the
constraint x−z0(x) ∈ Xf implies that z0(x) 6= 0 so that (4.5)
and (4.7) hold. The set-inclusion relation (4.8) holds true by
applying [2, Proposition 2.10].

Proof of Theorem 2. When N = 0, the statement holds
directly by the robust positive invariance of the set Xf for
the controlled dynamics (4.11). For any N ∈ N+, suppose
x ∈ CN so that PN (x) is feasible and the optimizer d0

N (x) =(
z0N (x), v0

N−1(x)
)

exists. For all w ∈ W , it holds that x+ =
Ax + BκN (x) + w = z01(x) + AK(x − z00(x)) + w so that
x+ − z01(x) = AK(x− z00(x)) + w. Now, we consider

dN (x+) :=
(
zN (x+), vN−1(x+)

)
, with

zN (x+) =
(
z01(x), . . . , z0N (x), AKz

0
N (x)

)
and

vN−1(x+) =
(
v01(x), . . . , v0N−1(x),Kz0N (x)

)
, (A.1)

and establish that dN (x+) is feasible for PN (x+), i.e.,
dN (x+) ∈ DN (x+). The dynamic consistency con-
straints (3.11a) are satisfied by the construction of dN (x+).
The tube initialization constraint x+−z0(x+) = x+−z01(x) =
AK(x − z00(x)) + w ∈ Xf holds for all w ∈ W . This is due
to the fact that (x− z00(x)) ∈ Xf and Xf is robust positively
invariant as specified in Assumption 3. Thus, the inequality
constraints (3.11b) is satisfied.

For all k ∈ NN−1, all w ∈ W and all s̃ ∈ S̃k, zk(x+) +
Ak

K(x+−z01(x))+ s̃ = z0k+1(x)+Ak+1
K (x−z00(x))+Ak

Kw+
s̃ and vk(x+) + KAk

K(x+ − z01(x)) + Ks̃ = v0k+1(x) +

KAk+1
K (x−z00(x))+KAk

Kw+Ks̃. It follows from (2.11) that
for all w ∈ W and all s̃ ∈ S̃k, Ak

Kw + s̃ ∈ S̃k+1. Therefore,
for all k ∈ NN−2 and all ŝ ∈ S̃k+1, (z0k+1(x) + Ak+1

K (x −
z00(x)) + ŝ, v0k+1(x) + KAk+1

K (x − z00(x)) + Kŝ) ∈ Y by
the definition of stage constraints (3.5). For k = N − 1 and
all ŝ ∈ S̃N , z0k+1(x) + Ak+1

K (x − z00(x)) + ŝ ∈ Xf holds
by the definition of terminal constraints (3.7). Then, by robust
positive invariance property of Xf , (z0N (x)+AN

K(x−z00(x))+
ŝ, Kz0N (x)+KAN

K(x−z00(x))+Kŝ) ∈ Y holds. Thus, for all
k ∈ NN−1 and all s̃ ∈ S̃k, we have that (zk(x+) +Ak

K(x+−
z01(x)) + s̃, vk(x+) +KAk

K(x+− z01(x)) +Ks̃) ∈ Y , i.e., the
inequality constraints (3.11c) are satisfied.

For k = N , zN (x+) + AN
K(x+ − z01(x)) ⊕ S̃N =

AKz
0
N (x) +AN+1

K (x− z00(x)) +AN
Kw ⊕ S̃N ⊆ AKz

0
N (x) +

AN+1
K (x − z00(x)) ⊕ S̃N+1. It follows from the definition of

constraints (3.7) that z0N (x) + AN
K(x − z00(x)) ⊕ S̃N ⊆ Xf .

Then, by the robust invariance property of Xf , it holds that
AK(z0N (x) + AN

K(x − z00(x)) ⊕ S̃N ) ⊕ W = AKz
0
N (x) +

AN+1
K (x− z00(x))⊕ S̃N+1 ⊆ Xf . Thus, zN (x+) +AN

K(x+ −
z01(x))⊕S̃N ⊆ Xf holds, i.e., the inequality constraints (3.11d)
are satisfied. Hence, we have that dN (x+) ∈ DN (x+), which
further implies that for all w ∈ W , x+ = Ax+BκN (x)+w ∈
CN and completes the proof.

Proof of Proposition 3 and Theorem 3. The admissible
decision variable dN (x+) specified in (A.1) yields the desired
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cost decrease, i.e.,

∀x ∈ CN , V 0
N (x+)− V 0

N (x) ≤ VN (dN (x+))− V 0
N (x)

= ‖z0N (x)‖2Q + ‖v0N (x)‖2R + ‖AKz
0
N (x)‖2P

− ‖z0N (x)‖2P − ‖z00(x)‖2Q − ‖v00(x)‖2R
≤ −‖z00(x)‖2Q − ‖v00(x)‖2R,

where the last inequality holds due to Assumption 5. Since
there exists β1 > 0 such that β1‖z00(x)‖2 ≤ ‖z00(x)‖2Q +
‖v00(x)‖2R, it follows that

∀x ∈ CN , V 0
N (x+)− V 0

N (x) ≤ −β1‖z00(x)‖2. (A.2)

It follows from (3.15) that, for all x ∈ CN , there also exists
β3 > 0 such that

β1‖z00(x)‖2 ≤ V 0
N (x) ≤ β3‖d0

N (x)‖2. (A.3)

The proof can now be completed by adapting an argument used
in the proof of [32, Theorem 3]. Namely, in light of Theorem 1,
the optimizer d0

N (·) is Lipschitz continuous. Thus, we have
that for all x ∈ CN and all y ∈ CN ,

‖d0
N (x)− d0

N (y)‖ ≤ L‖x− y‖, (A.4)

in which L > 0 denotes the associated Lipschitz constant. For
any x ∈ CN , by construction of y := x − z00(x) ∈ Xf ⊆ CN ,
we have d0

N (y) = 0 in light of (4.6). Then, (A.4) yields that

∀x ∈ CN , ‖d0
N (x)‖ ≤ L‖z00(x)‖. (A.5)

It follows from (A.3) and (A.5) that, with β2 := β3L
2,

∀x ∈ CN , β1‖z00(x)‖2 ≤ V 0
N (x) ≤ β2‖z00(x)‖2. (A.6)

Thus, in view of (A.6) and (A.2), Proposition 3 is proved.
Additionally, in light of [2, Theorem B.19], Theorems 1–2
and Proposition 3 yield the statements of Theorem 3.

Proof of Corollary 1. Let the set sequence {Qk ⊆ Rn}k∈N
be generated by the following set-dynamics

∀k ∈ N, Qk+1 = AKQk ⊕W with Q0 ⊆ Xf .

Proposition 4.3 of [27] directly implies that, for any set Q0

in the set of compact subsets of Xf , {Qk}k∈N converges
exponentially fast to XO in a stable manner with respect to the
Hausdorff distance. This fact in conjunction with Theorem 3
implies that, the set XO is robustly exponentially stable
for (4.10) with domain of attraction being equal to CN .
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