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Part I. Backgrounds
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Model Predictive Control

Optimization Real System
(state x)

control input u

Model

MPC

output y

state estimate x̂

Main idea:

Once the state estimate x̂ is received, MPC obtains the control action u by solving an
optimization problem, and then the process is repeated.

Constraints and a performance index are incorporated in the model.

In what follows, the state x is assumed to be perfectly known (x̂ = x). If not, the
problem falls under the scope of Output Feedback MPC.
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Model Predictive Control

MPC Formulation:

V ⋆
N (x) := minimize

dN

N−1∑
k=0

ℓ(xk, uk) + Vf (xN )

subject to


∀k ∈ NN−1, xk+1 = f(xk, uk),

∀k ∈ NN−1, (xk, uk) ∈ Y,

x0 = x, and xN ∈ Xf ,

with dN := (x0, . . . , xN , u0, . . . , uN−1).

Control system: x+ = f(x, u)

Constraint: (x, u) ∈ Y

Stage cost: ℓ : Rn × Rm → R

Terminal cost: Vf : Rn → R

Terminal set: Xf

Prediction horizon: N

Current state: x

Technical Principle:

Under mild technical conditions (e.g., continuity, compactness/closedness), the
optimization problem is well-posed.

The value function V ⋆
N (·), the optimizer d⋆

N (·), and the feasible domain CN .

The component u⋆
0(x) of the optimizer d⋆

N (x) is employed such that the MPC
controlled dynamics is given by

∀x ∈ CN , x+ = f(x, κN (x)), with κN (x) = u⋆
0(x).
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Model Predictive Control

MPC Controlled Dynamics: ∀x ∈ CN , x+ = f(x, κN (x)).

Desirable Control-Theoretic Properties:

Positive invariance of CN (i.e., ∀x ∈ CN =⇒ x+ = f(x, κN (x)) ∈ CN ), also known as
recursive feasibility of the underlying optimization problem, is guaranteed indirectly by
imposing positive invariance on Xf , i.e.,

∀x ∈ Xf , ∃κf (x) ∈ U(x) such that f(x, κf (x)) ∈ Xf .

Asymptotic stability of the origin for the MPC-controlled dynamics is guaranteed
indirectly via the condition that Vf (·) is a Lyapunov function over Xf , satisfying

∀x ∈ Xf , Vf (f(x, κf (x)))− Vf (x) ≤ −ℓ(x, κf (x)).

Limitations:

In the presence of disturbances, desirable properties may deteriorate, and constraint
violations may occur.

In safety-critical applications, it becomes necessary to explicitly model uncertainty in
the MPC formulation, e.g., robust MPC, stochastic MPC, distributionally robust MPC.
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Types of Uncertainty

Let w represent process noise and/or model-plant mismatch.

i. Set-membership description: w ∈ W
The set W is bounded, meaning that only worst-case geometric bounds of the
uncertainty are available.

ii. Stochastic description: w ∼ ω

The probability distribution/measure ω is known and supported by W, i.e., ω(W) = 1.

The uncertainty w is bounded if W is bounded, and unbounded if W is unbounded.

iii. Distributionally robust description: w ∼ ω, with ω ∈ Ω

The probability distribution ω is not known exactly, but belongs to an ambiguity set Ω.

The ambiguity set Ω is known, which is a family of possible probability distributions.

E.g., only the first two moments of ω are known.

iii ⇒ ii (when Ω is a singleton). iii ⇒ i (when Ω is specified by Ω = {ω : ω(W) = 1})
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Types of Constraints

Consider the uncertain system: x+ = f(x, u, w)

Interpretation 1. At any time k ∈ N, when the decision on uk is taken, the state xk is
known, while the current disturbance wk and all future disturbances wj , j > k are not
known but are guaranteed to obey the set-membership, stochastic, or distributionally
robust descriptions.

Interpretation 2. Even through the state of the system at current time is known, the
future state cannot be predicted accurately as the current and the future disturbances
are unknown to us.

Consider the state, control and disturbance processes: {xk}∞k=0, {uk}∞k=0 and {wk}∞k=0

If we know exactly wk ∼ ω, then we suppose xk ∼ ρk and uk ∼ ξk.

If we know wk ∼ ω, with ω ∈ Ω, then we suppose xk ∼ ρk ∈ Pk and uk ∼ ξk ∈ Ξk.
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Types of Constraints

i. Hard Constraints:
(xk, uk) ∈ X × U , ∀k ∈ N.

The disturbance constraint set W is typically required to be bounded.
(E.g., If X and U are bounded, an unbounded disturbance w ∈ W in x+ = f(x, u) + w would make satisfying

hard constraints impossible.)

While highly desirable in practice, hard constraint satisfaction is not always feasible.

ii. Expectation Constraints: ∫
X

r(x)ρk(dx) ≥ b, ∀k ∈ N,

where r : Rn → R is a measurable reward function, and b ∈ R is a scalar.

The goal is to ensure that the average value of r(x) over X remains no less than b.
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Types of Constraints

iii. Chance (Probabilistic) Constraints:

Pr(xk ∈ X ) =

∫
X

1 dρk =

∫
1X (x) ρk(dx) = ρk(X ) ≥ p, ∀k ∈ N,

where 1X : Rn → {0, 1} is the indicator function of the set X , defined as 1X (x) = 1 if
x ∈ X and 0 otherwise, and p ∈ (0, 1) is a user-specified tolerance probability.

The system state xk should remain within the set X with a probability of at least p.

iv. Worst-Case Chance Constraints:

min
ρk∈Pk

Pr(xk ∈ X ) ≥ p, ∀k ∈ N

It ensures that the chance constraint holds even in the most unfavorable distribution
within a specified ambiguity set Pk.

iii and iv are difficult to handle due to complexity of the set X , discontinuity of
the indicator function 1X , and typical difficulties in evaluating integral.
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Types of Constraints

Key Insights:

1 Hard constraints:

pros: guarantee feasibility and safety in all scenarios.
cons: may be overly conservative or infeasible under large disturbances.

2 Expectation constraints:

pros: balance performance and constraint satisfaction on average.
cons: do not prevent rare, significant violations of constraints.

3 Chance constraints:

pros: allow flexibility with probabilistic safety guarantees.
cons: require knowledge of the distribution; computationally expensive for complex systems.

4 Worst-case chance constraints:

pros: ensure robustness against distributional uncertainty.
cons: highly conservative and computationally expensive; requires defining ambiguity set
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Types of Cost Functions

Define Control Policy:

µ := {µ0 (·) , µ1 (·) , . . . , µN−1 (·)},

where x 7→ µk(x) represents a control law in the prediction horizon.

Define function:

JN (x,µ,w) :=

N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN ),

where w := (w0, w1, . . . , wN−1), and xk+1 = f(xk, µk(xk), wk) with x0 = x.
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Types of Cost Functions

i. Nominal Cost:

VN (x,µ) = JN (x,µ,0) =

N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN ).

For simplicity, the nominal cost is sometimes employed; here 0 is defined to be the
disturbance sequence w = (0, 0, . . . , 0).

ii. Worst-Case Cost:

VN (x,µ) = max
w∈WN

JN (x,µ,w) = max
w∈WN

N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN ).

The system’s performance against the most adverse disturbances.

It may lead to overly conservative control actions, sacrificing optimality.
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Types of Cost Functions

iii. Expectation Cost:

VN (x,π) = E
wk∼ω

(JN (x,µ,w)) = E
xk∼ρk

(
N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN )

)
.

Require accurate knowledge of disturbance distribution ω.

Evaluate the average cost over possible disturbance realizations.

The evaluation requires sampling methods or analytical approaches if possible.

iv. Worst-Case Expectation Cost:

VN (x,π) = max
ω∈Ω

E
wk∼ω

(JN (x,µ,w)) = max
ρk∈Pk

E
xk∼ρk

(
N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN )

)
.

Expectation with respect to the adversarial distribution from the ambiguity set.

Addresses scenarios where exact probability distributions are partially known.
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Part II. MPC Under Uncertainty

Kai Wang Model Predictive Control Under Uncertainty December, 2024 14 / 29



Model Predictive Control Under Uncertainty

Optimization Real System
(state x)

control input u

Model

MPC

output y

state estimate x̂

uncertainty w

We will explicitly account for uncertainty using robust, stochastic and
distributionally robust MPC frameworks, tailored to different uncertainty models
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Robust MPC

Robust MPC Formulation:

V ⋆
N (x) =min

µ
max

w∈WN

N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN )

subject to


∀k ∈ NN−1, xk+1 = f(xk, µk(xk), wk),

∀k ∈ NN−1, (xk, µk(xk)) ∈ X × U ,

x0 = x, and xN ∈ Xf .

Key Ideas:

The disturbance set W must be bounded.

The terminal set Xf is required to be robust positively invariant, while Vf is a robust
Lyapunov function over Xf .

The inner optimization (max) evaluates the worst-case disturbance, while the outer
optimization (min) computes the control policy to minimize the worst-case cost.

Guarantees of robust positive invariance and asymptotic stability are well-established.
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Stochatstic MPC

Stochastic MPC Formulation:

V ⋆
N (x) =min

µ
E

xk∼ρk

(
N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN )

)

subject to


∀k ∈ NN−1, xk+1 = f(xk, µk(xk), wk),

∀k ∈ NN−1, Pr(xk ∈ X ) ≥ p

x0 = x, and xN ∈ Xf .

Key Ideas:

The disturbance distribution wk ∼ ω is required to be known.

Hard constraints or chance constraints on the control input uk = µk(xk) can be
incorporated into the formulation.

The terminal set Xf must exhibit positive invariance in a probabilistic sense, and Vf

should act as a stochastic Lyapunov function within Xf .

Guarantees for recursive feasibility and stochastic stability require further research.
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Distributionally Robust MPC

Distributionally Robust MPC Formulation:

V ⋆
N (x) =min

µ
max

ρk∈Pk

E
xk∼ρk

(
N−1∑
k=0

ℓ(xk, µk(xk)) + Vf (xN )

)
.

subject to


∀k ∈ NN−1, xk+1 = f(xk, µk(xk), wk),

∀k ∈ NN−1, min
ρk∈Pk

Pr(xk ∈ X ) ≥ p

x0 = x, and xN ∈ Xf .

Key Ideas:

The exact disturbance distribution ω is unknown, but the ambiguity set Ω needs to be
predetermined.

Hard constraints or worst-case chance constraints on the control input uk = µk(xk)
can be incorporated into the formulation.

The terminal set Xf must exhibit positive invariance in a probabilistic sense with
respect to the worst-case disturbance distribution, and Vf should act as a stochastic
Lyapunov function within Xf .

Guarantees of recursive feasibility and stability are even more challenging to establish.
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Robust, Stochastic and Distributionally Robust MPC

Comparisons:

Feature Robust MPC Stochastic MPC DR-MPC

Uncertainty Model worst-case bounded disturbances known probabilistic distribution ambiguity set of distributions

Objective worst-case cost expected cost worst-case expected cost

Constraint hard constraint chance constraint worst-case chance constraint

Conservatism high low medium to high

Remarks:

In these three formulations, the nominal cost, VN (x,µ) = JN (x,µ,0), is frequently
used for simplicity and other practical considerations.

Solving these optimization problems can be computationally challenging.

Scenario-based and convex approximation methods are often employed.

Advances in parameterizing state and control predictions have been widely adopted.

Tube MPC has emerged as a leading paradigm.
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Tube MPC

For robust MPC, the state (control) tube is a sequence of sets of all possible
states (controls).
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Tube MPC

For stochastic MPC and distributionally robust MPC, the state (and/or control)
tube is a sequence of sets of states (and/or controls), which stay within the

tube with a probabilistic guarantee.
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Tube MPC

Robust Tube

Probabilistic Tube

Ideas:

State and control tubes replace traditional state and control sequences.

Tubes are induced from the dynamics, uncertainty and employed control policy.

Optimal tube is obtained via solving tube-based optimal control.

Parameterization of tubes and control policy is of major importance.
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Tube-Based Robust MPC

x(0)

x(1)

z(0)

z(1)

z(2)

z(3)

z(4)
z(5) z(6)

x(2)

x(3)

x(4)
x(5) x(6)

Settings:

Uncertain control system: x+ = Ax+Bu+ w.

Constraints: w ∈ W (bounded) and (x, u) ∈ X × U .

State decomposition: x = z + s, where

z+ = Az +Bv and

s+ = (A+BK)s+ w.

Affine control policy: uk = vk +K(xk − sk), ∀k ∈ NN−1.
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Tube-Based Robust MPC

x(0)

x(1)

z(0)

z(1)

z(2)

z(3)

z(4)
z(5) z(6)

x(2)

x(3)

x(4)
x(5) x(6)

S

x = z + s

z+ = Az +Bv

s+ = (A+BK)s+ w

Key Ideas:

The set S is robust positively invariant, i.e.,
∀s ∈ S ⇒ s+ = (A+BK)s+ w ∈ S, ∀w ∈ W.

State and control tubes are given by z(t)⊕ S and v(t)⊕KS, for all t ∈ N.
The selection of optimal tube reduces to the selection of the tube centers z(t), t ∈ N.
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Tube-Based Robust MPC

Other Tube MPC Schemes:

Rigid tube MPC:

x(0)

x(1)
x = x(2)

z0

z1

z2
z3 z4

zN−1

zN

current state

nominal state predictions

Time-Varying Tube MPC:

x(0)

x(1)

x = x(2)

z0

z1

z2 z3 z4

zN−1

zN
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Tube-Based Robust MPC

Other Tube MPC Schemes:

Tube MPC with Time-Varying Cross-Sections:

x(0)

x(1) x = x(2)

z0 + s̄0

z1 + s̄1

z2 + s̄2 z3 + s̄3 z4 + s̄4

zN−1 + s̄N−1

zN + s̄N

Xf

Remarks:

Tube MPC is computationally simple and has guaranteed control-theoretic properties.

Stochastic and Distributionally Robust MPC can be addressed similarly using the Tube
MPC framework.
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Closing Remarks

We have discussed three uncertainty models:
(set-membership, stochastic and distributionally robust uncertainty.)

We have discussed four types of constrains:
(hard, expectation, chance and worse-cast chance constrains. )

We have discussed four types of cost functions:
(nominal, worst-case, expectation, worse-cast expectation costs. )

We have discussed three types of MPC under uncertainty:
(robust, stochastic and distributionally robust MPC. )

Tube MPC is a natural and leading framework to solve MPC under uncertainty.
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As always, follow-up discussions are welcome!

Contact: k.wang@lboro.ac.uk
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