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Abstract— This paper proposes a model predictive con-
troller for discrete-time linear systems with additive, possibly
unbounded, stochastic disturbances and subject to chance
constraints. By computing a polytopic probabilistic positively
invariant set for constraint tightening with the help of the
computation of the minimal robust positively invariant set, the
chance constraints are guaranteed, assuming only the mean and
covariance of the disturbance distribution are given. The result-
ing online optimization problem is a standard strictly quadratic
programming, just like in conventional model predictive control
with recursive feasibility and stability guarantees and is simple
to implement. A numerical example is provided to illustrate the
proposed method.

I. INTRODUCTION

In the last two decades, model predictive control (MPC)
has emerged as one of the most prevalent optimization-
based control techniques in academia and industry [1], [2],
[3]. The main advantages of MPC come from its ability to
simultaneously cope with constraints, optimize performance
and ensure desirable control-theoretic properties [4], [5].
However, many of these properties deteriorate in the pres-
ence of disturbances, although nominal (certainty-equivalent)
MPC exhibits inherent robustness to some extent [6]. Nev-
ertheless, an MPC that explicitly considers uncertainty is
required in safety-critical applications. When the uncertainty
description of the disturbance is available, robust MPC [7],
[8], stochastic MPC [9], and more recent distributionally
robust MPC [10] can be employed to maintain safety to
certain acceptable levels. Whereas robust MPC considers
the set-membership description of bounded uncertainties,
stochastic MPC and distributionally robust MPC consider
uncertainties which follow specific probability distributions
or sets of probability distributions, respectively.

To alleviate the computational complexity of the exact
min-max robust MPC [5], tube MPC has been widely in-
vestigated as a sensible option for its intuitive simplicity,
computational practicality and guaranteed control-theoretic
properties. Building on the two early tube MPC methods for
linear systems under bounded disturbance [11], [12], which
were proposed almost simultaneously, numerous subsequent
studies have emerged. These studies have explored tube-
based robust MPC [13], [14], [15], [16], tube-based stochas-
tic MPC [17], [18], [19], [20], [21], [22], and tube-based
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distributionally robust MPC [23], [24], [25]. Interestingly,
most tube-based robust MPC proposals reviewed above were
generated from [11], while almost all tube-base stochastic
and distributionally robust MPC proposals have adopted
method [12]. The key difference lies in the initialization
of the optimal control problem (OCP): in [11], the OCP is
solved using the current state of the nominal system, whereas
in [12], it is solved based on the current state of the actual
system. Another significant difference is in how the stage
constraints are tightened: [11] employs (minimal) robust
positively invariant sets, while [12] utilizes a sequence of
reachable sets starting from the origin. Recursive feasibility
and stability are easier to achieve in [11] than in [12], as
argued in [26].

However, extending [11] to linear stochastic systems with
possibly unbounded stochastic disturbances requires com-
puting a probabilistic positively invariant set [27] which
is non-trivial. In this regard, [27] proposes a method to
compute polyhedral probabilistic positively invariant sets by
using Chebyshev inequality, assuming that the system matrix
is diagonalizable and that the disturbance distribution has
zero-mean and diagonal covariance matrix. The paper [28]
proposes to characterize ellipsoidal probabilistic positively
invariant sets, assuming that the system matrix is invertible
and that the disturbance distribution has zero-mean. In [29],
the ellipsoidal probabilistic positively invariant sets are inves-
tigated, assuming a correlation bound for the system matrix.

Contributions: In this paper, we generalize the method
of [11] to linear systems under possibly unbounded stochas-
tic disturbance, where chance constraints on the state and
input are considered. The proposed MPC only requires
knowledge of the mean and covariance of the stochastic
disturbance without assuming zero-mean, invertible/diagonal
system matrices or bounds on the mean and covariance
of the disturbance as required in [27], [28], [29]. To en-
force the chance constraints through constraint tightening,
a polytopic (minimal) probabilistic positively invariant set
is computed, which is minimal for a group of polytopes
that are probabilistic positively invariant. The resulting online
optimization problem is a simple, standard, strictly convex
quadratic programming for which recursive feasibility and
stability properties can be easily guaranteed.

Structure: Section II details the problem setup on the
systems and constraints. Section III discusses the probabilis-
tic positively invariant set and its computation. Section IV
presents the proposed MPC algorithm. Section V demon-
strates the proposed approach with a numerical case study,
and the paper is concluded in Section VI.
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Notation: The sets of real numbers, non-negative integers
and positive integers are denoted by R, N and N+, respec-
tively. Given a, b ∈ N, with a < b, we use the notation Iba
to denote the set of non-negative integers {a, a+ 1, . . . , b}.
The Minkowski sum and Pontryagin difference of nonempty
sets X and Y are

X ⊕ Y := {x+ y : x ∈ X , y ∈ Y} and
X ⊖ Y := {x : ∀y ∈ Y, x+ y ∈ X} ,

respectively. The image of a nonempty set X under a
matrix of compatible dimensions M is given by MX :=
{Mx : x ∈ X}. Likewise, if M is a square matrix, for any
integer k ∈ N, MkX :=

{
Mkx : x ∈ X

}
. The sets of sym-

metric positive semi-definite and symmetric positive definite
matrices in Rn are denoted by Sn+ and Sn++, respectively.
Ellipsoids with shape matrix M ∈ Sn+, center c ∈ Rn and
radius

√
r > 0 are defined as

E(M, c, r) :={x : (x− c)⊺M−1(x− c) ≤ r}
={c+M

1
2x : x⊺x ≤ r},

where the matrix M
1
2 is such that M

1
2M

1
2 = M . In addition,

it holds that E(M, c, r) = c⊕ E(M, 0, r) by definition. The
support function h(X , ·) of a nonempty, closed, convex set
X ⊆ Rn is given, for all y ∈ Rn, by

h (X , y) := sup
x
{y⊺x : x ∈ X},

II. PROBLEM SETUP

This paper considers uncertain linear systems of the form

∀k ∈ N, xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn and uk ∈ Rm denote the state and input,
respectively, while wk ∈ Rn denotes a randomly distributed
disturbance. These disturbances w0, w1, . . . : Rn → Rn

are assumed identically distributed and independent of each
other and xk and uk, with common probability distribution
ω, i.e., for all k ∈ N, we have that wk ∼ ω. Due to the
disturbance wk, we consider chance constraints on the state
xk and input uk, given by:

∀k ∈ N+, Pr(xk ∈ X | x0) ≥ 1− ϵx and (2)
∀k ∈ N, Pr(uk ∈ U) ≥ 1− ϵu, (3)

where ϵx, ϵu ∈ (0, 1) are modeling parameters, x0 is an
initial state, and X and U denote constraint sets on the state
and input respectively. The set X (U) is a region for which
the system state xk (input uk) should be confined with a
probability no lower than the specified confidence level 1−ϵx
(1− ϵu).

We make the following standing assumptions on the
system dynamics (1) and constraints (2)-(3).

Assumption 1:
i. The matrix pair (A,B) ∈ Rn×n × Rn×m is known

exactly, and it is strictly stabilizable.
ii. The set X ⊆ Rn is a convex polyhedron that contains

the origin in its interior, and the set U ⊆ Rm is a

convex polytope that contains the origin in its interior.
In addition, their irredundant inequalities characteriza-
tions are given by:

X := {x : ∀i ∈ IX , f⊺
i x ≤ 1} , (4)

U := {u : ∀i ∈ IU , g⊺i u ≤ 1} , (5)

with the known finite index sets IX := {1, 2, . . . , nX },
IU := {1, 2, . . . , nU}, and the known vectors fi ∈ Rn

and gi ∈ Rn.
iii. The probability distribution ω is not known exactly,

however, its mean vector µω ∈ Rn and covariance
matrix Σω ∈ Sn++ are known.

In what follows, we introduce the linear feedback law as

∀k ∈ N, uk = vk +Ksk (6)

and rewrite the state xk as

∀k ∈ N, xk = zk + sk. (7)

Here, zk ∈ Rn denotes the nominal (disturbance-free)
component such that

∀k ∈ N, zk+1 = Azk +Bvk (8)

based on the nominal control input vk ∈ Rm. Thus, by
subtracting (8) from (1) and in view of (6)–(7), sk ∈ Rn

denotes the error component satisfying

∀k ∈ N, sk+1 = (A+BK)sk + wk, with wk ∼ ω. (9)

The matrix K ∈ Rm×n is a priori given and constructed to
satisfy the following assumption.

Assumption 2: The matrix K ∈ Rm×n is given, and it is
such that the matrix AK := A + BK is strictly stable, i.e.,
all eigenvalues of AK are in the open unit disc.

III. PROBABILISTIC POSITIVELY INVARIANT
SET

Let µk ∈ Rn and Σk ∈ Sn++ denote the mean vector
and covariance matrix of the random vector sk, whose
stochasticity is caused by the random disturbance sequence
{wi}k−1

i=0 via stochastic dynamics (9). Then, the dynamics of
µk and Σk are specified, with µ0 = s0 and Σ0 = 0, by

∀k ∈ N, µk+1 = AKµk + µω and (10)
∀k ∈ N, Σk+1 = AKΣkA

⊺
K +Σω. (11)

Based on the multivariate Chebyshev inequality [30], [31],
we have the following proposition.

Proposition 1: Suppose Assumption 1–iii holds. Consider
µk and Σk generated by (10) and (11). It follows that

∀k ∈ N+, Pr (sk ∈ E(Σk, µk, n/ϵ) | s0) ≥ 1− ϵ, (12)

i.e., E(Σk, µk, n/ϵ) are confidence regions with confidence
level 1− ϵ of the random vectors sk.
Proof. It follows from [30, Theorem 1] that

∀k ∈ N+, Pr
(
(sk − µk)

⊺Σ−1
k (sk − µk) > n/ϵ | s0

)
≤ Pr

(
(sk − µk)

⊺Σ−1
k (sk − µk) ≥ n/ϵ | s0

)
≤ ϵ,
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such that

∀k ∈ N+, Pr
(
(sk − µk)

⊺Σ−1
k (sk − µk) ≤ n/ϵ | s0

)
= 1− Pr

(
(sk − µk)

⊺Σ−1
k (sk − µk) > n/ϵ | s0

)
≥ 1− ϵ.

Thus, it follows from the definition of ellipsoids that

∀k ∈ N+, Pr (sk ∈ E(Σk, µk, n/ϵ) | s0) ≥ 1− ϵ.

□
Corollary 1: Suppose Assumptions 1 and 2 hold. Con-

sider µk and Σk generated by (10) and (11). It follows that

∀k ∈ N+, E(Σk+1, µk+1, n/ϵ)

⊆ AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ). (13)
Proof. By the property of ellipsoids, it holds that

∀k ∈ N+, E(Σk+1, µk+1, n/ϵ) = µk+1 ⊕ E(Σk+1, 0, n/ϵ)

and

AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ)

= AKµk + µω ⊕AKE(Σk, 0, n/ϵ)⊕ E(Σω, 0, n/ϵ).

For all k ∈ N+, it follows from [29, Property 1] that

E(Σk+1, 0, n/ϵ) ⊆ AKE(Σk, 0, n/ϵ)⊕ E(Σω, µω, n/ϵ),

and it follows from (10) that

µk+1 = AKµk + µω.

Thus, the Minkowski sum of both sides of the above two
expressions completes the proof. □

At this point, we introduce the sets Rϵ
k defined by the

following set-dynamics:

∀k ∈ N, Rϵ
k+1 = AKRϵ

k ⊕ E(Σω, µω, n/ϵ) (14)

with the boundary condition given by Rϵ
0 = {s0}.

Proposition 2: Suppose Assumptions 1 and 2 hold. Con-
sider the sets Rϵ

k generated by (14) and µk and Σk generated
by (10) and (11). It follows that

∀k ∈ N+, E(Σk, µk, n/ϵ) ⊆ Rϵ
k, (15)

such that, for all k ∈ N+

Pr (sk ∈ Rϵ
k | s0) ≥ Pr (sk ∈ E(Σk, µk, n/ϵ) | s0)

≥ 1− ϵ. (16)
Proof. We will show by induction that the inclusions (15)
holds. When k = 1, we have that

E(Σ1, µ1, n/ϵ) = Aµ0 ⊕ E(Σω, µω, n/ϵ)

Rϵ
1 = As0 ⊕ E(Σω, µω, n/ϵ)

such that E(Σ1, µ1, n/ϵ) = Rϵ
1 ⊆ Rϵ

1 since µ0 = s0.
Suppose, for some k ∈ N+, E(Σk, µk, n/ϵ) ⊆ Rϵ

k, then
we have that

E(Σk+1, µk+1, n/ϵ) ⊆ AKE(Σk, µk, n/ϵ)⊕ E(Σω, µω, n/ϵ)

⊆ AKRϵ
k ⊕ E(Σω, µω, n/ϵ)

= Rϵ
k+1,

in which the first inclusion follows from (13). It follows
from (12) and (15) that (16) holds. □

We recall from [27] that a set S ⊆ Rn is called proba-
bilistic positively invariant for the system (9) with probability
1−ϵ, if and only if, for any s0 ∈ S, Pr (sk ∈ S | s0) ≥ 1−ϵ
for all k ∈ N+.

Proposition 3: Suppose Assumptions 1 and 2 hold. Con-
sider a set Rϵ ⊆ Rn satisfying, for any s0 ∈ Rϵ,

AKRϵ ⊕ E(Σω, µω, n/ϵ) ⊆ Rϵ (17)

with ϵ ∈ (0, 1). Then, Rϵ is a probabilistic positively
invariant set for the system (9) with probability 1− ϵ.
Proof. Consider the sets Rϵ

k generated by (14). As shown
in (16), we have that

∀k ∈ N+, Pr (sk ∈ Rϵ
k | s0) ≥ 1− ϵ.

To show that Rϵ is a probabilistic positively invariant set for
the stochastic system (9) with probability 1−ϵ, we just need
to prove that for all s0 ∈ Rϵ it holds that Rϵ

k ⊆ Rϵ, k ∈ N.
When k = 0, Rϵ

0 = {s0} ⊆ Rϵ trivially holds. Suppose, for
some k ∈ N, Rϵ

k ⊆ Rϵ, then we have that

Rϵ
k+1 = AKRϵ

k ⊕ E(Σω, µω, n/ϵ)

⊆ AKRϵ ⊕ E(Σω, µω, n/ϵ) ⊆ Rϵ.

Thus, by induction, for all s0 ∈ Rϵ, we have Rϵ
k ⊆ Rϵ for

all k ∈ N. □
In the rest of this section, we make the following standing

assumption
Assumption 3: Given ϵ ∈ (0, 1), the set E(Σω, µω, n/ϵ)

contains the origin in its interior.
Note that Assumption 3 implies that the support func-

tions of E(Σω, µω, n/ϵ) is positive, i.e., for all y ∈ Rn,
h (E(Σω, µω, n/ϵ), y) > 0. We will discuss the methods for
computing a probabilistic positively invariant set Rϵ based
on the sufficient condition given by (17).

Given ϵ ∈ (0, 1) satisfying Assumption 3, we recall
that a set Rϵ ⊆ Rn is robust positively invariant for the
uncertain dynamics ∀k ∈ N, sk+1 = AKsk + wk with
wk ∈ E(Σω, µω, n/ϵ) if and only if

AKRϵ ⊕ E(Σω, µω, n/ϵ) ⊆ Rϵ, (18)

and it is the minimal robust positively invariant set if and
only if

AKRϵ ⊕ E(Σω, µω, n/ϵ) = Rϵ. (19)

Thus, condition (17) is equivalent to the sufficient and
necessary condition for characterizing robust positively in-
variant sets for the system ∀k ∈ N, sk+1 = AKsk + wk

with wk ∈ E(Σω, µω, n/ϵ). Moreover, the minimal robust
positively invariant set given by (19) is desirable since it
will be used to tighten the constraint set in the next section.

However, computing an exact representation of the min-
imal robust positively invariant set is generally impossible.
In practice, outer invariant approximations of the minimal
robust positively invariant set are computed [32]. In our
setting, since E(Σω, µω, n/ϵ) is an ellipsoid rather than a
polytope, the method [32] is not applicable. Instead, we
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utilize the approach from [33], which builds upon the method
originally proposed in [16]. This approach computes a poly-
topic robust positively invariant set that is minimal with
respect to a group of robust positively invariant sets defined
by a finite number of inequalities with pre-specified normal
vectors. In the sequel, we briefly summarize the method
of [33]. Consider the set Rϵ(q) defined as follows, with
IP = {1, ..., r} and r ∈ N+:

Rϵ(q) = {x ∈ Rn : ∀i ∈ IP , p⊺i x ≤ qi}, (20)

where {pi : ∀i ∈ IP} spans Rn, qi ≥ 0 for all i ∈ IP ,
and q = (q1, . . . , qr)

⊺. Then, the polytopic, minimal robust
positively invariant set generated from the pre-defined normal
vectors {pi : ∀i ∈ IP} is given by

Rϵ(q∗) = {x ∈ Rn : ∀i ∈ IP , p⊺i x ≤ q∗i }. (21)

Here, q∗ = d∗ + c∗, where d∗ := (d∗1, ..., d
∗
r)

⊺ is given by

∀i ∈ IP , d∗i = h (E(Σω, µω, n/ϵ), pi)

= µ⊺
ωpi +

√
n(p⊺i Σωpi)

ϵ
, (22)

and c∗ := (c∗1, ..., c
∗
r)

⊺ is given by the solution to the
following linear programming problem:

max
c, ξ

r∑
i=0

ci

s.t.

{
∀i ∈ IP , ci ≤ p⊺i AKξi

∀i ∈ IP , ∀j ∈ IP , p⊺j ξi ≤ ci + d∗i

(23)

with c := (c1, ..., cr)
⊺ and ξ := {ξi ∈ Rn}ri=1. In view of

Proposition 3, Rϵ(q∗) is a probabilistic positively invariant
set for the system (9) with probability 1 − ϵ. In [33],
both c∗ and d∗ are computed simultaneously through a
single optimization problem. However, as noted in Remark
4 of [33], d∗ can also be pre-computed. In addition, a recent
study [34] has proposed a systematic way for designing the
collection of norm vectors {pi : ∀i ∈ IP}.

IV. ROBUSTIFYING MPC IN PROBABILISTIC
WAYS

Within our setting, given N ∈ N+, for any nominal state
zk ∈ Rn at the sampling time k ∈ N, the proposed MPC
solves an OCP of the form:

V ⋆
N (zk) = min

zk,vk

N−1∑
t=0

ℓ(zt|k, vt|k) + Vf (zN |k)

s.t.


∀t ∈ IN−1

0 , zt+1|k = Azt|k +Bvt|k,

∀t ∈ IN−1
1 , zt|k ∈ Z,

∀t ∈ IN−1
0 , vt|k ∈ V,

zN |k ∈ Zf , z0|k = zk,
(24)

with zk := (z⊺0|k, ..., z
⊺
N |k)

⊺ and vk := (v⊺0|k, ..., v
⊺
N−1|k)

⊺.
The subscript t|k denotes the predictions of the nominal state
and control t-steps ahead of the sampling time k. The stage
and terminal costs are given by

ℓ(z, v) = z⊺Qz + v⊺Rv and Vf (z) = z⊺Pz , (25)

for all z ∈ Rn and all v ∈ Rm, with P,Q ∈ Sn++ and
R ∈ Sm++. The stage constraint sets on the nominal state and
input are given by

Z := X ⊖Rϵx(q∗) and V := U ⊖KRϵu(q∗). (26)

Assumption 4: The nominal state constraint set Z is a
nonempty convex polyhedron that contains the origin in its
interior, and the nominal input constraint set V is a nonempty
convex polytope that contains the origin in its interior.

This assumption implies that Rϵx(q∗) ⊆ interior(X ) and
KRϵu(q∗) ⊆ interior(U), i.e.,

∀i ∈ IX , h (Rϵx(q∗), fi) < 1 and
∀i ∈ IU , h (Rϵu(q∗),K⊺gi) < 1.

Therefore, the sets Z and V are non-empty and efficiently
computed as follows:

Z := {z : ∀i ∈ IX , f⊺
i z ≤ 1− h (Rϵx(q∗), fi)} ,

V := {v : ∀i ∈ IU , g⊺i v ≤ 1− h (Rϵu(q∗),K⊺gi)} .

The nominal terminal constraint set Zf and cost Vf satisfy
the following natural conditions [5].

Assumption 5:
i. Let Kf ∈ Rn×m be such that AKf

:= A + BKf is
strictly stabilizable. The set Zf is a convex polyhedron,
and it is the maximal positively invariant set for the
system z+ = AKf

z and constraints (z,Kfz) ∈ Z×V .
ii. It holds that, for all z ∈ Zf ,

Vf ((A+BKf )z) + ℓ(z,Kfz) ≤ Vf (z). (27)
We define the feasible set for N ∈ N+ by

XN := {zk ∈ Rn : zk is such that (24) is feasible} .

In our setting, the optimization problem (24) is a convex
quadratic programming problem, feasible for all zk ∈ XN .
The problem involves N(n+m)+n decision variables, with
Nn+ n affine equality constraints and N(nX + nU ) + nZf

affine inequality constraints, where nZf
denotes the number

of the inequality representations of the set Zf . We denote
the parametric solution map of (24) by z⋆k(zk) and v⋆

k(zk).
Finally, we denote the MPC feedback law on the nominal
system (8) and the real system (1) by

κ̄N (zk) = v⋆0|k(z0) and

κN (xk) = κ̄N (zk) +K(xk − zk),

respectively, such that the closed-loop controlled systems are
given by

∀k ∈ N, zk+1 = Azk +Bκ̄N (zk) and (28)
∀k ∈ N, xk+1 = Axk +BκN (xk) + wk, wk ∼ ω. (29)

The proposed MPC scheme is briefly summarized in the
Algorithm 1. By construction, we have that zk ∈ Z for all
k ∈ N+ and vk ∈ V for all k ∈ N. Thus, the condition x0−
z0 ∈ Rϵx(q∗), along with the state and input decompositions
given in (6)–(7), ensures that chances constraints (2) and (3)
are satisfied.
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Algorithm 1 Robustifing MPC of chance constrained linear
systems
Initialization: Given an initial system state x0, choose an
initial nominal state z0 such that x0 − z0 ∈ Rϵx(q∗).
for all k = 0→∞, do

1) Solve the OCP (24) to obtain z⋆k(zk) and v⋆
k(zk).

2) Apply the κ̄N (zk) and κN (xk) to (28) and (29),
respectively.

3) Measure the real state xk+1 and nominal state zk+1

from (28) and (29), respectively.
4) Set k ← k + 1, and go to Step 1.

Theorem 1: Suppose Assumptions 1–5 hold. Denote ρ∞
as the stationary process of the system sk+1 = AKsk +wk,
with wk ∼ ω. For all z0 ∈ XN , the MPC optimization prob-
lem (24) is recursively feasible. The MPC-controlled nominal
system (28) is asymptotically stable to the origin. The real
state xk of the MPC controlled system (29) converges to the
stationary process ρ∞ as k →∞.
Proof. The recursive feasibility of (24) is guaranteed by
the invariant property of the terminal set Zf enforced
in Assumption 5–i, as shown in [4], [5]. The origin is
asymptotic stable for the dynamics (28), with the domain of
attraction equaling to XN . This can be verified by showing
that the value function V 0

N is a Lyapunov function for the
dynamics (28) based on Assumption 5 [4], [5]. Because AK

is strictly stabilizable, sk converges to a stationary process
ρ∞ as k →∞. Given that xk = zk+sk and uk = vk+Ksk,
and noting that zk → 0 and vk → 0 as k → ∞, it follows
that xk converges to ρ∞. □

V. NUMERICAL CASE STUDY

We consider a DC-DC converter model that has previously
been adopted in [19], [20], and it is of the form

∀k ∈ N, xk+1 =

[
1 0.075

−1.43 0.996

]
xk +

[
4.798
0.115

]
uk + wk,

where the mean vector and covariance matrix of the stochas-
tic disturbance wk ∼ ω are given by

µω =

[
0.005
0.005

]
and Σω = 10−4 ×

[
1 0
0 1

]
. (30)

The state and input constraint sets are given by

X :=
{
x ∈ R2

∣∣ −2 ≤ [1 0]x ≤ 2, −3 ≤ [0 1]x ≤ 3
}

U := {u ∈ R | −0.4 ≤ u ≤ 0.4} .

The weighting matrices for the stage and terminal costs are
given by

Q =

[
1 0
0 10

]
, R = 1 and P =

[
1.9074 −5.0562
−5.0562 39.5448

]
.

For the sake of simplicity, the control feedback and local
terminal feedback matrices are specified by

K = Kf = [−0.2858 0.4910],

such that the matrices AK and AKf
are strictly stable.

Note that K and Kf are not required to be the same.
The terminal weighting matrix P and the feedback matrix
Kf are derived from the solution to the infinite-horizon
unconstrained optimal control problem for (A,B,Q,R).
The modeling parameters in chance constraints (2)-(3) are
specified by

ϵx = ϵu = 0.2.

To compute a polytopic probabilistic positively invariant set
given by (21), we define the normal vectors pi ∈ R2 as

∀i ∈ {1, ..., r}, pi =
[
sin

(
2π(i−1)

r

)
cos

(
2π(i−1)

r

)]⊺
,

with r = 66. Then, q∗ = c∗ + d∗ is computed from the
solutions to (22) and (23).

0 1 2 3

0

1

2

3

x1

x2
x0

Fig. 1: The closed-loop real state trajectories of (29) with
8 sampled disturbance sequences (coloured lines) and the
closed-loop nominal state trajectories of (28) (red dots). The
dashed and solid lines denote partial borders of Z and X ,
respectively.

We choose a prediction horizon N = 10 and start the
control process from an initial state x0 = [2.6 3.2]⊺. For
convenience, we set z0 = x0. Fig. 1 visualizes the closed-
loop real state trajectories and nominal trajectories with some
disturbance sequences {wk}25k=0 sampled from the multi-
variate normal distribution whose mean and covariance are
given in (30). By simulating the closed-loop system with 104

different realizations of the disturbance sequence {wk}25k=0,
we observe that the average state constraint violation in
the first nine steps is 2%, while the input constraints were
not violated. These results are rather conservative than the
pre-defined violating probabilities ϵx = ϵu = 0.2. This
discrepancy is due to the fact that the computed probabilistic
positively invariant sets are conservative since only mean and
covariance information are used in computing the confidence
regions. Fig. 2 shows the nominal state trajectory of zk
given by (28) and the nominal input trajectory of κ̄N (zk),
illustrating that the controlled nominal system asymptotically
convergences to the origin. Consequently, the real state xk

of (29) converges to the stationary process, and the set
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Rϵ
x(q

∗) is confidence region with probability 1− ϵx of this
stationary process.
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3

0 5 10 15 20 25

-0.15

-0.1

-0.05

0

k

k

zk

κ̄N (zk)

Fig. 2: The closed-loop nominal state zk (upper part) and the
closed-loop nominal input κ̄N (zk) (lower part).

VI. CONCLUSIONS
This paper has introduced a model predictive controller

that provides sufficient robustness to reject possibly un-
bounded stochastic disturbances with chance constraints on
the system state and input being guaranteed. Compared to
conventional MPC algorithms, the proposed method only
needs minor offline computational efforts to compute a
probabilistic positively invariant set, which can be easily
computed by solving a simple linear programming problem.
Future work will aim to reduce conservativeness, adapt the
method for nonlinear systems, and extend the certainty-
equivalent cost function to expected ones.
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predictive control,” in Proceedings of American Control Conference,
2016, pp. 3594 – 3599.
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