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Markov Control Model

State transition: s,a︸︷︷︸
current state&input

s.t. transition law ρ−−−−−−−−−−−−−→
or, state space model f

s+︸︷︷︸
successor state

(Valid) transition probability function

ρ
(
s+ | s,a

)
: S × S ×A → [0,∞)

such that

P [sk+1 ∈ B | sk,ak] =

∫
B
ρ
(
s′
∣∣ sk,ak) ds′, for all B ⊆ S.

In classic control, it is specified by the equation of the form

sk+1 = f(sk,ak,wk),

where {wk} is i.i.d with values in W and distribution µ, independent of s0.

Model ρ is more “general”; Model f is more “intuitive”. Relation:∫
B
ρ
(
s′ | sk,ak

)
ds′ =

∫
W

1B
(
f(sk,ak,w)

)
µ(w)dw, given sk, ak .
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Markov Control Model

Finite-horizon performance criterion:

J(π, s0) = Eπ
s0

[
N−1∑
k=0

`(sk,ak) + `N (sN )

]
,

Mission horizon:N

stage cost `, and terminal cost `N

Deterministic Markov policy: π = (π0,π1, . . . ,πN−1) ∈ Π
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Chance Constraints

Mission-wide chance constraint:

P
[
s1,...,N ∈ S | s0,π

]
≥ 1− ε

S is regarded as a safe region

ε ∈ [0, 1] is a predefined risk bound

describe a reasonable reliability concerning the whole mission

Stage-wise chance constraints:

P [ sk ∈ S ] ≥ 1− εk, ∀k ∈ {0, . . . , N}

describe reliability only at individual stages

Cumulative chance constraints:
N∑
k=0

P[xk ∈ S ] ≥ r

safe approximations of mission-wide chance constraint if one sets r = 1− ε, i.e.,
a feasible policy here must be feasible for the mission-wide chance constraint too.
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Mission-Wide Chance-Constrained Optimal Control

no-fly zone
(unsafe set)

no-fly zone
(unsafe set)

Goal

Safe Set

×
unsafe

×non-optimal

Stage: 0 1 2 N − 1 N· · ·

Mission-wide chance constrained optimal control problem:

J?(s0)
def
= min

π∈Π
Eπ
s0

[
N−1∑
k=0

`(sk,ak) + `N (sN )

]
s.t. P

[
s1,...,N ∈ S | s0,π

]
≥ 1− ε .

assume that this problem is well-defined and non-trivial, and attains its minimum value

The goal is to find an optimal policy π? ⊆ Π for all feasible s0 ∈ S.

In this paper, we provides a Dynamic Programming (DP) algorithm,
finding both the value function J? and an optimal policy π?.
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How does Standard DP work?

The classic way: transform the constraint into objective via penalty function

First, define functions:

V π
k (s) = P

[
sk+1,...,N ∈ S

∣∣ sk = s
]

and V π
0 (s0) = P

[
s1,...,N ∈ S | s0,π

]
By Lemma 1 in the paper

V π
k (sk) = Esk+1

[
V π
k+1(sk+1) | sk

]
Transform the constraint into objective function via penalty function

J̃?(s0) = min
π

Eπ
s0

[
N−1∑
k=0

`(sk,ak) + `N (sN )

]
+ ζ
(
V π

0 (s0)
)

where ζ : [0, 1]→ [−∞,+∞] is some penalty functions.

What would function ζ be like to ensure that DP algorithms exist?
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How does DP work?

Solving: J̃?(s0) = min
π

Eπ
s0

[
N−1∑
k=0

`(sk,ak) + `N (sN )

]
+ζ (V π

0 (s0)) via DP.

Proposition 1: If the penalty function ζ commutes with the expectation operator
Esk+1 , i.e.,

ζ (V π
k (sk)) = ζ

(
Esk+1

[
V π
k+1(sk+1) | sk

])
= Esk+1

[
ζ
(
V π
k+1(sk+1)

)
| sk
]
.

Then the DP solutions are given by the following recursion:

J̃N (sN ) = `N (sN ) + ζ (VN (sN ))

J̃k(sk) = min
ak∈A

`(sk,ak) +

∫
S
J̃k+1(sk+1)ρ(sk+1|sk,ak)dsk+1

Remark:

If ζ is an affine function, then Proposition 1 holds.

However, to enforce exact penalty of mission-wide chance constraint, ζ is of the form:

ζ (x) =

{
0, if x ≥ 1− ε
+∞, otherwise ,

which does not commute with the expectation operator. Proposition 1 fails to apply.
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Functional State Augmentation

State Augmentation: enlarge the state information, based on which one makes decisions

First, define forward dynamics:

F0(s) = 1S(s), and Fk+1(s) =

∫
S
Fk(s′)ρ

[
s | s′,ak

]
ds′.

such that∫
S
Fk(s)ds = P

[
s1,...,k ∈ S

∣∣ s0,π
]

and

∫
S
FN (s)ds = P

[
s1,...,N ∈ S

∣∣ s0,π
]

Transform the constraint into objective function via penalty function:

J?(s0) = min
π

Eπ
s0

[
N−1∑
k=0

`(sk,ak) + `N (sN )

]
+ ζ

(∫
S
FN (s)ds

)
with ζ being an EXACT penalty function, i.e.,

ζ (x) =

{
0, if x ≥ 1− ε
∞, otherwise ,
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Functional State Augmentation

State Augmentation: adding Fk to the state components(
sk+1

Fk+1(s)

)
=

(
f(sk,ak,wk)∫

S Fk(s′)ρ
[
s | s′,ak

]
ds′

)

Proposition 2: By defining δk = (sk, Fk) as the new state, then the DP solutions
are given by the following recursion:

JN (δN ) = `N (sN ) + ζ

(∫
S
FN (s)ds

)
Jk(δk) = min

ak

`(sk,ak) +

∫
S
Jk+1(δk+1)ρ[sk+1|sk,ak]dsk+1

Remark:

sk is stochastic, but the functional state Fk is deterministic.

Penalty only applies to the final state, specifically, FN .

Functional state Fk are infinite-dimensional.
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Case Study
Linear systems (one dimensional) with additive Gaussian disturbance

sk+1 = 0.95sk + 1.05ak + wk, wk ∼ N (0, 0.112)

S = [−1.5, −0.3]; A = {−0.2, −0.1, 0.1, 0.2, 0.3}; N = 4; `(s,a) = 5s2 + a2;
`N (s) = 5.7s2; s0 = −1; safety bound 0.8.

stage 0 stage 1 stage 2 stage 3 stage 4

-1.5

-1

-0.3

0

s
ta

te
 v

a
lu

e

Running 105 missions, we get empirical safety is 0.84, satisfying the safety guarantee.

we get empirical cost 12.98, close to the theoretical minimum J?(−1) = 12.99.
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Summary

Conclusions

Mission-wide chance constraints express a meaningful reliability of the whole mission

Standard DP only works on the cases where the penalty function commutes with
expectation operator.

We derive a DP algorithm by adding an additional functional state

Future work:

investigate some approximation methods based on the proposed DP scheme to make
numerical simulations tractable

make use of data-driven method e.g., reinforcement learning to solve this mission-wide
chance-constrained OCPs.

Contact: kai.wang@ntnu.no

Thank you! Questions?

Kai Wang (NTNU) CDC 2022 December, 2022 12 / 12



Summary

Conclusions

Mission-wide chance constraints express a meaningful reliability of the whole mission

Standard DP only works on the cases where the penalty function commutes with
expectation operator.

We derive a DP algorithm by adding an additional functional state

Future work:

investigate some approximation methods based on the proposed DP scheme to make
numerical simulations tractable

make use of data-driven method e.g., reinforcement learning to solve this mission-wide
chance-constrained OCPs.

Contact: kai.wang@ntnu.no

Thank you! Questions?

Kai Wang (NTNU) CDC 2022 December, 2022 12 / 12


