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Overview

Background
o Stochastic Optimal Control
o Mission-Wide Chance-Constrained Optimal Control

o Chance Constraints: mission-wide & stage-wise

Contributions

o Remaining MWPSs & Initially Prescribed MWPS
(MWPS: Mission-Wide Probability of Safety)

o Recursive Feasibility of MWPS Constraints
o Stochastic Linear MPC with MWPS guarantee
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Stochastic Optimal Control

Mission: plan an optimal trajectory for the drone

@
Goal

s.t. disturbance w

State transition: s,u St
~~ ~~
current state&input successor state

o s,u and w are all continuous

o we will describe this transition via conditional distribution:
pls+ |s,u] (depending on the distribution of w)

o In classic control, it is modeled as s = f(s, u, w) for some function f
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Stochastic Optimal Control

Mission: plan an optimal trajectory for the drone within N stages
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A simplified diagram above: the drone may reach the goal point before stage .

Performance assessment:
o N: mission horizon or number of times control is applied (typically very large)
o stage cost: L (s,u) € R, terminal cost: M(sy) € R

o policy sequence is 7 := {mo,...,wn_1} such that u; = 7y (sg)
o total cost:
N-1
E |M(sn)+ D Lsk, mk(sk))
k=0

(the expectation is taken over the state trajectories)
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Mission-Wide Chance-Constrained Optimal Control
Mission: plan an optimal trajectory for the drone within N stages and subject to safety
constraints Mission: plan an optimal trajectory for the drone within N stages and subject
to probabilistic safety constraints
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Safety considerations:
o A mission to be safe if: s1,... n € S.(may be impossible!!!)
o Mission-Wide Probability of Safety (MWPS):

P[s1,....~ € S|so, 7]

o MWPS constraint, i.e., mission-wide chance constraint:

Pls1,...,n € S|sg, ] > S, with S €]0,1]
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Mission-Wide Chance-Constrained Optimal Control

Mission: plan an optimal trajectory for the drone within N stages and subject to MWPS
constraint

Stage 0 Stage 1 Stage 2 e Stage N — 1 Stage N

Find a policy sequence solution of:

min  E | M(sn) + Z (s, ™k (sk))

st. Plsi,...~n € S|SO,7r} >S5

Notice: the space of policies is functional, and dynamic programming fails to apply directly.
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Chance Constraints: mission-wide & stage-wise

MWPS (More meaningful in this case)
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(In engineering, we typically care about the probability that the mission is successful, i.e., MWPS.)
Comparison:

o Mission-Wide Probability of Safety (MWPS): w.r.t. the whole mission.

o Stage-Wise Probability of Safety (SWPS): w.r.t. a single time stage.

o Classic SMPC that enforces P joint SWPSs, P is the prediction horizon (typically
P < N)

It is hard to non-conservatively enforce MWPS via (multiple) SWPS because of the
correlation between successive states
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Overview

Background
o Stochastic Optimal Control
o Mission-Wide Chance-Constrained Optimal Control

o Chance Constraints: mission-wide & stage-wise

Contributions

o Remaining MWPSs & Initially Prescribed MWPS
(MWPS: Mission-Wide Probability of Safety)

o Recursive Feasibility of MWPS Constraints

o Stochastic Linear MPC with MWPS guarantee
(A tentative solution given by shrinking-horizon policies)
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Remaining MWPSs & Initially Prescribed MWPS

Once a policy sequence 7 := {m0,...,wn_1} is selected in the beginning of the mission.

o initially prescribed MWPS (fixed value):

Pon:=P [Sl,.A.,N €S ! So,ﬂ'} Any relations
between Py n

o remaining MWPSs (random value): and P, n?

(depend on the specific realization of sy

Pi,n =P [sp1,...,v €S|sp, {mk, ..., *N_1}]

Lemma 1: Given a policy sequence 7, we observe that

I[‘:{51 ..... k€S| so,{mo,-Tr_1}} [Pk’N} =Po,n

for all Kk = 1,...,N — 1, i.e. the remaining MWPSs are equal to the initially
prescribed MWPS in the expected value sense.

This Lemma forms a basis for constructing a recursively feasible SMPC controller
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Recursive Feasibility of MWPS Constraints

SMPC with Shrinking-horizon policy (solving N optimal control problems in an " on-line” fashion)

o Find policy

How to ensure

that solves the problem
P recursive feasibility?

N-1
min B |:M(SN) +> L(Slvﬂ'{c(sl))]

1=k
st. Plspt1,.. n €S|sg, 7] > Sy

(m—k are parameterized in practice such that it lies in

How to fulfill the
MWPS constraint of
the closed-loop system?

the subspace of its actual admissible set)

o The control inputs applied to the closed-loop
system are given by

u, =7 (s), k=0,...,N—1

We will answer these questions by designing the parameter Sy properly J
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Recursive Feasibility of MWPS Constraints

Proposition 1: Assume that there exist feasible 70 satisfies the MWPS constraint:
P[s1,...N € S|so, 7% > So > S

and that each policy sequence =¥ is built under the constraint:
Plskt1,....N € S|sk, 7] > Sy, (1)

with S = VgP[sg41,...,.8 € S| sk, 1], where v, € (0,1], for all k. Then the
closed-loop MWPS constraints under {73, .. .,ﬁ'%:}} reads as:

N-1
Plsy,..x €S|so,{@5,...,#N=1}] = [ wSo-
k=1

Corollary.
o the choice of Hi\]:_ll v, So = S fulfills the closed-loop MWPS constraint.

o constraint (1) is feasible for 7k = k=1 je., the SMPC controller is recursive feasible.
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Stochastic Linear MPC with MWPS guarantee

The linear system: s = Asy, + Buy + wy,
The safe set: S is polytopic, i.e., S={s|Cs+c < 0} J

At current state sg, for all t = k,..., N — 1, solve the problem

N—-1
min E |s) sy + (sT s +uTRu>
g, 22 [ N@NSN ;c ¢+ @st +u; Ruy

s.t. S =sg
St+1 = ASt + Buy, (nominal dynamic model)
ety1 = (A+ BK) et +wye, (error dynamic model)
St+1 = St+1 + €t+1,
P[Csip1+¢ <0, V] > Sy,

where @, Qn are semi-positive definite, R is positive definite.

The policy ¥ is parameterized as 7¥ (s¢) := G + Ke; (classic in stochastic/robust MPC)J
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Kai Wang (NTNU)

Stochastic Linear MPC with MWPS guarantee

Cost function. assume zero-mean of wy,
cost function reduces to

N—-1
shQusy + Y (57 Qs+ uf R +o,
t=k

where o is a constant term.
Chance constraint. reformulated as

PlH(wWg,...,N-1) + C§Z+1,4.4,N <0] > Sk

with appropriate matrices H and C.

CDC 2021

Scenario Approximation. further
reformulated via samples

H(i)(wz(j,),,,,zv_l) + C§Z+1,...,N <0

(forall 4 =1,..., Ng, and N is the number of samples
[cf. Calafiore 2009])

Pick up a “representative” sample. label:

Ij = max [H“)}]v

vjel
iEH[lka] J [1,nc]>

(n¢ is the number of constraints generated by a sample 7)
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Stochastic Linear MPC with MWPS guarantee

Eventually, we derive the following QP

N-1
. -T _ =Tz =T p=
min SN@NSN + E (St Qs + 1, Rut)
t=Fk

A regular QP of the
same complexity as
a normal linear MPC

s.t. S = si
St+1 = AS¢ + Bug + wy,
Z; + [Cl8k+1,..,.8 <0

Algorithm: linear SMPC with MWPS constraint

Initialization: So, v1,... n—1, initial state sp;
while k =0: N — 1 do
Evaluate Sy through Monte Carlo simulation;
Generate N samples;
Get the solution ﬁz,m,l\l—l by solving the QP above;

Send @i} to the actual system and update state: si 1 = Asy + Buj + wy;
end
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Stochastic Linear MPC with MWPS guarantee: a case study

S2 o System matrices:

e ST

o Disturbance: wy ~ N(0,0.04 - 1)

o Safe set matrices:

-2
0 1 -2
=11 o |°7| —10
? 0 -1 -2
e 3 e Q=1 R=01,
K =[-0.6167,—1.2703]
. . L . 2.0599 0.5916
Figure: State trajectories via running Monte Carlo QN = 0.5916 1.4298
simulations ’ :

o Set N =11, Sg = 0.98 and ~1,... 10 = 0.9, resulting in S = [T}2, xS0 = 0.8863
o Running 10° missions shows that the resulting ratio of mission success is 99.88%

This discrepancy is due to that the scenario-based method adopted is conservative.
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Summary

Conclusions
o Showed that the remaining MWPSs remain constant in the expected value sense
o Proposed a recursively feasible control scheme while ensuring MWPS constraint

o Deployed the idea in the linear case via an efficient scenario-based approach

Future work:
o More advanced methods in place of the classic Monte-Carlo sampling

o Receding-horizon policy in place of the shrinking-horizon policy

Contact: kai.wang@ntnu.no

Thank you! Questions?
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