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Stochastic Optimal Control

Mission: plan an optimal trajectory for the drone

Goal

State transition: s,u︸︷︷︸
current state&input

s.t. disturbance w−−−−−−−−−−−→ s+︸︷︷︸
successor state

s,u and w are all continuous

we will describe this transition via conditional distribution:

ρ [s+ | s,u] (depending on the distribution of w)

In classic control, it is modeled as s+ = f(s,u,w) for some function f
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Stochastic Optimal Control
Mission: plan an optimal trajectory for the drone within N stages

Goal

Stage 0 Stage 1 Stage 2 Stage N − 1 Stage N· · ·

· · ·

· · ·

A simplified diagram above: the drone may reach the goal point before stage N .

Performance assessment:

N : mission horizon or number of times control is applied (typically very large)

stage cost: L (s,u) ∈ R, terminal cost: M(sN ) ∈ R
policy sequence is π := {π0, . . . ,πN−1} such that uk = πk(sk)

total cost:

E

[
M(sN ) +

N−1∑
k=0

L(sk,πk(sk))

]
(the expectation is taken over the state trajectories)
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Mission-Wide Chance-Constrained Optimal Control
Mission: plan an optimal trajectory for the drone within N stages and subject to safety
constraints Mission: plan an optimal trajectory for the drone within N stages and subject
to probabilistic safety constraints

no-fly zone

no-fly zone

Goal

Stage 0 Stage 1 Stage 2 Stage N − 1 Stage N· · ·

· · ·

· · ·

Safety considerations:

A mission to be safe if: s1,...,N ∈ S.(may be impossible!!!)

Mission-Wide Probability of Safety (MWPS):

P[s1,...,N ∈ S | s0,π]

MWPS constraint, i.e., mission-wide chance constraint:

P[s1,...,N ∈ S | s0,π] ≥ S, with S ∈ [0, 1]
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Mission-Wide Chance-Constrained Optimal Control

Mission: plan an optimal trajectory for the drone within N stages and subject to MWPS
constraint

no-fly zone

no-fly zone

Goal

Stage 0 Stage 1 Stage 2 Stage N − 1 Stage N· · ·

· · ·

· · ·

Find a policy sequence solution of:

min
π

E

[
M(sN ) +

N−1∑
k=0

L(sk,πk(sk))

]
s.t. P[s1,...,N ∈ S | s0,π] ≥ S

Notice: the space of policies is functional, and dynamic programming fails to apply directly.
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Chance Constraints: mission-wide & stage-wise

no-fly zone

no-fly zone

Goal

Stage 0 Stage 1 Stage 2 Stage N − 1 Stage N· · ·

· · ·

· · ·SWPS at stage 2

MWPS (More meaningful in this case)

Stage P· · ·

· · ·

· · ·

(In engineering, we typically care about the probability that the mission is successful, i.e., MWPS.)

Comparison:

Mission-Wide Probability of Safety (MWPS): w.r.t. the whole mission.

Stage-Wise Probability of Safety (SWPS): w.r.t. a single time stage.

Classic SMPC that enforces P joint SWPSs, P is the prediction horizon (typically
P � N)

It is hard to non-conservatively enforce MWPS via (multiple) SWPS because of the
correlation between successive states
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Remaining MWPSs & Initially Prescribed MWPS

Once a policy sequence π := {π0, . . . ,πN−1} is selected in the beginning of the mission.

initially prescribed MWPS (fixed value):

P0,N := P
[
s1,...,N ∈ S

∣∣ s0,π
]

remaining MWPSs (random value):
(depend on the specific realization of s1,...,k)

Pk,N := P
[
sk+1,...,N ∈ S

∣∣ sk, {πk, . . . ,πN−1}
]

Any relations
between P0,N

and Pk,N?

Lemma 1: Given a policy sequence π, we observe that

E{s1,...,k∈S | s0,{π0,...,πk−1}}
[
Pk,N

]
= P0,N

for all k = 1, . . . , N − 1, i.e. the remaining MWPSs are equal to the initially
prescribed MWPS in the expected value sense.

This Lemma forms a basis for constructing a recursively feasible SMPC controller
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Recursive Feasibility of MWPS Constraints

SMPC with Shrinking-horizon policy (solving N optimal control problems in an ”on-line” fashion)

Find policy

π̃k =
{
π̃k

k, . . . , π̃
k
N−1

}
that solves the problem

min
πk

E

[
M(sN ) +

N−1∑
l=k

L(sl,π
k
l (sl))

]
s.t. P[sk+1,...,N ∈ S | sk,πk] ≥ Sk

(πk are parameterized in practice such that it lies in

the subspace of its actual admissible set)

The control inputs applied to the closed-loop
system are given by

uk = π̃k
k (sk) , k = 0, . . . , N − 1

How to ensure
recursive feasibility?

How to fulfill the
MWPS constraint of

the closed-loop system?

We will answer these questions by designing the parameter Sk properly
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Recursive Feasibility of MWPS Constraints

Proposition 1: Assume that there exist feasible π0 satisfies the MWPS constraint:

P[s1,...,N ∈ S | s0,π
0] ≥ S0 ≥ S

and that each policy sequence πk is built under the constraint:

P[sk+1,...,N ∈ S | sk,πk] ≥ Sk (1)

with Sk = γkP[sk+1,...,N ∈ S | sk,πk−1], where γk ∈ (0, 1], for all k. Then the

closed-loop MWPS constraints under {π̃0
0, . . . , π̃

N−1
N−1} reads as:

P
[
s1,...,N ∈ S

∣∣∣ s0, {π̃0
0, . . . , π̃

N−1
N−1}

]
≥

N−1∏
k=1

γkS0 .

Corollary.

the choice of
∏N−1

k=1 γkS0 = S fulfills the closed-loop MWPS constraint.

constraint (1) is feasible for πk = πk−1, i.e., the SMPC controller is recursive feasible.
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Stochastic Linear MPC with MWPS guarantee

The linear system: sk+1 = Ask +Buk + wk

The safe set: S is polytopic, i.e., S = { s |Cs + c ≤ 0}

At current state sk, for all t = k, . . . , N − 1, solve the problem

min
ūk,...,N−1

E

[
s>NQNsN +

N−1∑
t=k

(
s>t Qst + u>t Rut

)]
s.t. s̄k = sk

s̄t+1 = As̄t +Būt, (nominal dynamic model)

et+1 = (A+BK) et + wt, (error dynamic model)

st+1 = s̄t+1 + et+1,

P[Cst+1 + c ≤ 0, ∀t] ≥ Sk ,

where Q,QN are semi-positive definite, R is positive definite.

The policy πk is parameterized as πk
t (st) := ūt +Ket (classic in stochastic/robust MPC)
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Stochastic Linear MPC with MWPS guarantee

Cost function. assume zero-mean of wk,
cost function reduces to

s̄>NQN s̄N +

N−1∑
t=k

(
s̄>t Qs̄t + ū>t Rūt

)
+ σ,

where σ is a constant term.

Chance constraint. reformulated as

P[H(wk,...,N−1) + Cs̄>k+1,...,N ≤ 0] ≥ Sk

with appropriate matrices H and C.

Scenario Approximation. further
reformulated via samples

H(i)(w
(i)
k,...,N−1) + Cs̄>k+1,...,N ≤ 0

(for all i = 1, . . . , Nk , and Nk is the number of samples

[cf. Calafiore 2009])

Pick up a “representative” sample. label:

Ij = max
i∈I[1,Nk]

[H(i)]j , ∀j ∈ I[1,nc],

(nc is the number of constraints generated by a sample i)
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Stochastic Linear MPC with MWPS guarantee

Eventually, we derive the following QP

min
ū

s̄T
NQN s̄N +

N−1∑
t=k

(
s̄T
t Qs̄t + ūT

t Rūt

)
s.t. s̄k = sk

s̄t+1 = As̄t +Būt + w̄t,

Ij + [C]j s̄k+1,...,N ≤ 0

A regular QP of the
same complexity as

a normal linear MPC

Algorithm: linear SMPC with MWPS constraint

Initialization: S0, γ1,...,N−1, initial state s0;
while k = 0 : N − 1 do

Evaluate Sk through Monte Carlo simulation;
Generate Nk samples;
Get the solution ū∗k,...,N−1 by solving the QP above;

Send ū∗k to the actual system and update state: sk+1 = Ask +Bū∗k + wk;

end
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Stochastic Linear MPC with MWPS guarantee: a case study

(0, 0)
(−8, 0)

Figure: State trajectories via running Monte Carlo
simulations

System matrices:

A =

[
1 1
0 1

]
, B =

[
0.5
1

]
Disturbance: wk ∼ N (0, 0.04 · I)
Safe set matrices:

C =


1 0
0 1
−1 0
0 −1

 , c =


−2
−2
−10
−2


Q = I, R = 0.1,
K = [−0.6167,−1.2703]

QN =

[
2.0599 0.5916
0.5916 1.4228

]

Set N = 11, S0 = 0.98 and γ1,...,10 = 0.99, resulting in S =
∏10

k=1 γkS0 = 0.8863

Running 105 missions shows that the resulting ratio of mission success is 99.88%

This discrepancy is due to that the scenario-based method adopted is conservative.
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Summary

Conclusions

Showed that the remaining MWPSs remain constant in the expected value sense

Proposed a recursively feasible control scheme while ensuring MWPS constraint

Deployed the idea in the linear case via an efficient scenario-based approach

Future work:

More advanced methods in place of the classic Monte-Carlo sampling

Receding-horizon policy in place of the shrinking-horizon policy

Contact: kai.wang@ntnu.no

Thank you! Questions?
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